Mostra el registre parcial de l'element

dc.contributor.authorLopez-Sola, Edmundo
dc.contributor.authorSanchez-Todo, Roser
dc.contributor.authorLleal, Èlia
dc.contributor.authorKöksal-Ersöz, Elif
dc.contributor.authorYochum, Maxime
dc.contributor.authorMakhalova, Julia
dc.contributor.authorMercadal, Borja
dc.contributor.authorGuasch-Morgades, Maria
dc.contributor.authorSalvador, Ricardo
dc.contributor.authorLozano-Soldevilla, Diego
dc.contributor.authorModolo, Julien
dc.contributor.authorBartolomei, Fabrice
dc.contributor.authorWendling, Fabrice
dc.contributor.authorBenquet, Pascal
dc.contributor.authorRuffini, Giulio
dc.date.accessioned2025-01-21T10:38:08Z
dc.date.available2025-01-21T10:38:08Z
dc.date.issued2022
dc.identifier.citationLopez-Sola, Edmundo; Sanchez-Todo, Roser; Lleal, Èlia [et al.]. A personalizable autonomous neural mass model of epileptic seizures. Journal of Neural Engineering, 2022, 19(5), 055002. Disponible en: <https://iopscience.iop.org/article/10.1088/1741-2552/ac8ba8>. Fecha de acceso: 21 ene. 2025. DOI: 10.1088/1741-2552/ac8ba8ca
dc.identifier.issn1741-2552ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/4585
dc.description.abstractWork in the last two decades has shown that neural mass models (NMM) can realistically reproduce and explain epileptic seizure transitions as recorded by electrophysiological methods (EEG, SEEG). In previous work, advances were achieved by increasing excitation and heuristically varying network inhibitory coupling parameters in the models. Based on these early studies, we provide a laminar NMM capable of realistically reproducing the electrical activity recorded by SEEG in the epileptogenic zone during interictal to ictal states. With the exception of the external noise input into the pyramidal cell population, the model dynamics are autonomous. By setting the system at a point close to bifurcation, seizure-like transitions are generated, including pre-ictal spikes, low voltage fast activity, and ictal rhythmic activity. A novel element in the model is a physiologically motivated algorithm for chloride dynamics: the gain of GABAergic post-synaptic potentials is modulated by the pathological accumulation of chloride in pyramidal cells due to high inhibitory input and/or dysfunctional chloride transport. In addition, in order to simulate SEEG signals for comparison with real seizure recordings, the NMM is embedded first in a layered model of the neocortex and then in a realistic physical model. We compare modeling results with data from four epilepsy patient cases. By including key pathophysiological mechanisms, the proposed framework captures succinctly the electrophysiological phenomenology observed in ictal states, paving the way for robust personalization methods based on NMMs.ca
dc.format.extentDesconocidoca
dc.language.isoengca
dc.publisherIOP Scienceca
dc.relation.ispartofJournal of Neural Engineeringca
dc.relation.ispartofseries19;5
dc.rights© Journal of Neural Engineeringca
dc.subject.otherEpilèpsiaca
dc.subject.otherEpilepsiaca
dc.subject.otherEpilepsyca
dc.titleA personalizable autonomous neural mass model of epileptic seizuresca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc159.9ca
dc.identifier.doihttps://dx.doi.org/10.1088/1741-2552/ac8ba8ca


Fitxers en aquest element

FitxersGrandàriaFormatVisualització

No hi ha fitxers associats a aquest element.

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix