Mostra el registre parcial de l'element

dc.contributor.authorRodríguez-González, Raquel
dc.contributor.authorDelgado, José Ángel
dc.contributor.authorDelgado, Luis M.
dc.contributor.authorAntoñanzas Pérez, Román
dc.date.accessioned2024-10-10T10:48:18Z
dc.date.available2024-10-10T10:48:18Z
dc.date.issued2024
dc.identifier.citationRodríguez-González, Raquel; Delgado, José Ángel; Delgado, Luis M. [et al.]. Silica 3D printed scaffolds as pH stimuli-responsive drug release platform. Materials Today Bio, 2024, 28, 101187. Disponible en: <https://www.sciencedirect.com/science/article/pii/S2590006424002485>. Fecha de acceso: 10 oct. 2024. DOI: 10.1016/j.mtbio.2024.101187ca
dc.identifier.issn2590-0064ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/4420
dc.description.abstractSilica-based scaffolds are promising in Tissue Engineering by enabling personalized scaffolds, boosting exceptional bioactivity and osteogenic characteristics. Moreover, silica materials are highly tunable, allowing for controlled drug release to enhance tissue regeneration. In this study, we developed a 3D printable silica material with controlled mesoporosity, achieved through the sol-gel reaction of tetraethyl orthosilicate (TEOS) at mild temperatures with the addition of different calcium concentrations. The resultant silica inks exhibited high printability and shape fidelity, while maintaining bioactivity and biocompatibility. Notably, the increased mesopore size enhanced the incorporation and release of large molecules, using cytochrome C as a drug model. Due to the varying surface charge of silica depending on the pH, a pH-dependent control release was obtained between pH 2.5 and 7.5, with maximum release in acidic conditions. Therefore, silica with controlled mesoporosity could be 3D printed, acting as a pH stimuli responsive platform with therapeutic potential.ca
dc.format.extent10ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofMaterials Today Bioca
dc.relation.ispartofseries28
dc.rights© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/).ca
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.subject.otherSol-gel de síliceca
dc.subject.otherImpressió 3Dca
dc.subject.otherBioactivitatca
dc.subject.otherSensible al pHca
dc.subject.otherResposta als estímulsca
dc.subject.otherSistemes de lliurament de medicamentsca
dc.subject.otherSol-gel de síliceca
dc.subject.otherImpresión 3Dca
dc.subject.otherBioactividadca
dc.subject.otherSensibilidad al pHca
dc.subject.otherRespuesta a estímulosca
dc.subject.otherSistemas de administración de fármacosca
dc.subject.otherSilica sol-gelca
dc.subject.other3D printingca
dc.subject.otherBioactivityca
dc.subject.otherPH-sensitiveca
dc.subject.otherStimuli-responsiveca
dc.subject.otherDrug delivery systemsca
dc.titleSilica 3D printed scaffolds as pH stimuli-responsive drug release platformca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc61ca
dc.identifier.doihttps://dx.doi.org/10.1016/j.mtbio.2024.101187ca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

© 2024 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/bync/4.0/).
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com https://creativecommons.org/licenses/by-nc/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix