Mostra el registre parcial de l'element

dc.contributor.authorGarcia-Vidal, Carolina
dc.contributor.authorTeijón-Lumbreras, Christian
dc.contributor.authorAiello, Tommaso Francesco
dc.contributor.authorChumbita, Mariana
dc.contributor.authorMenendez, Rosario
dc.contributor.authorMateu Subirà, Aina
dc.contributor.authorPeyrony, Olivier
dc.contributor.authorMonzó, Patricia
dc.contributor.authorLopera, Carlos
dc.contributor.authorGallardo-Pizarro, Antonio
dc.contributor.authorMéndez, Raúl
dc.contributor.authorCalbo, Esther
dc.contributor.authorXercavins, Mariona
dc.contributor.authorCuesta Chasco, Genoveva
dc.contributor.authorMartínez, José A.
dc.contributor.authorMarcos, M. Angeles
dc.contributor.authorMensa, Josep
dc.contributor.authorSoriano, Alex
dc.date.accessioned2024-05-16T11:10:00Z
dc.date.available2024-05-16T11:10:00Z
dc.date.issued2024
dc.identifier.citationGarcia-Vidal, Carolina; Teijón-Lumbreras, Christian; Aiello, Tommaso Francesco [et al.]. K-means clustering identifies diverse clinical phenotypes in COVID-19 patients: implications for mortality risks and remdesivir impact. Infectious Diseases and Therapy, 2024, 13, p. 715-726 . Disponible en: <https://link.springer.com/article/10.1007/s40121-024-00938-x>. Fecha de acceso: 16 may. 2024. DOI: 10.1007/s40121-024-00938-xca
dc.identifier.issn2193-8229ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/4230
dc.descriptionThis study has been co-funded by the European Regional Development Fund (EDRD). Carolina Garcia Vidal [FIS PI21/01640] has received research grants from the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III. Project PI21/01640 has been funded by Instituto de Salud Carlos III (ISCIII) and co-funded by the European Union. This work was co-funded by a research grant (SGR 01324 Q5856414G) from the AGAUR (Agencia de Gestión de Ayudas Universitarias y de Investigación) of Catalunya. This work was fnanced also by ad hoc patronage funds for research on COVID-19, provided by donations from citizens and organizations made to Hospital Clínic de Barcelona-Fundació Clínic per a la Recerca Biomèdica. A-TF has received a pre-doctoral grant supported by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III [RH RH042953]. Authors also would like to acknowledge OP’s post-doctoral fellow fnancial support: la Ligue Nationale contre le Cancer (convention no. AAPMRC 2022/OP) and la Direction de l’Assistance Publique—Hôpitaux de Paris (APHP). No funding bodies had any role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No funding or sponsorship was received for the publication of this article.en
dc.description.abstractIntroduction: The impact of remdesivir on mortality in patients with COVID-19 is still controversial. We aimed to identify clinical phenotype clusters of COVID-19 hospitalized patients with highest benefit from remdesivir use and validate these findings in an external cohort. Methods: We included consecutive patients hospitalized between February 2020 and February 2021 for COVID-19. The derivation cohort comprised subjects admitted to Hospital Clinic of Barcelona. The validation cohort included patients from Hospital Universitari Mutua de Terrassa (Terrassa) and Hospital Universitari La Fe (Valencia), all tertiary centers in Spain. We employed K-means clustering to group patients according to reverse transcription polymerase chain reaction (rRT-PCR) cycle threshold (Ct) values and lymphocyte counts at diagnosis, and pre-test symptom duration. The impact of remdesivir on 60-day mortality in each cluster was assessed. Results: A total of 1160 patients (median age 66, interquartile range (IQR) 55–78) were included. We identified five clusters, with mortality rates ranging from 0 to 36.7%. Highest mortality rate was observed in the cluster including patients with shorter pre-test symptom duration, lower lymphocyte counts, and lower Ct values at diagnosis. The absence of remdesivir administration was associated with worse outcome in the high-mortality cluster (10.5% vs. 36.7%; p < 0.001), comprising subjects with higher viral loads. These results were validated in an external multicenter cohort of 981 patients. Conclusions: Patients with COVID-19 exhibit varying mortality rates across different clinical phenotypes. K-means clustering aids in identifying patients who derive the greatest mortality benefit from remdesivir use.en
dc.format.extent12ca
dc.language.isoengca
dc.publisherSpringer Natureca
dc.relation.ispartof12ca
dc.relation.ispartofseries13
dc.rightsThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.ca
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.otherCOVID 19ca
dc.subject.otherAgents antiviralsca
dc.subject.otherAgrupacióca
dc.subject.otherIntel·ligència artificialca
dc.subject.otherCOVID-19ca
dc.subject.otherAgentes antiviraleses
dc.subject.otherAgrupaciónes
dc.subject.otherInteligencia artificiales
dc.subject.otherCOVID-19es
dc.subject.otherAntiviral agentsen
dc.subject.otherClusteringen
dc.subject.otherArtifcial intelligenceen
dc.subject.otherCOVID-19en
dc.titleK-means clustering identifies diverse clinical phenotypes in COVID-19 patients: implications for mortality risks and remdesivir impactca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc61ca
dc.identifier.doihttps://dx.doi.org/10.1007/s40121-024-00938-xca


Fitxers en aquest element

 

Aquest element apareix en la col·lecció o col·leccions següent(s)

Mostra el registre parcial de l'element

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com http://creativecommons.org/licenses/by-nc/4.0/
Comparteix a TwitterComparteix a LinkedinComparteix a FacebookComparteix a TelegramComparteix a WhatsappImprimeix