Mostrar el registro sencillo del ítem

dc.contributor.authorRUBIO-PALAU, JOSEP
dc.contributor.authorCOVIDSurg Collaborative
dc.date.accessioned2022-10-21T07:48:37Z
dc.date.available2022-10-21T07:48:37Z
dc.date.issued2021
dc.identifier.citationCOVIDSurg Collaborative. Machine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality score. British Journal of Surgery, 2021, 108(11), p. 1274-1292. Disponible en: <https://academic.oup.com/bjs/article/108/11/1274/6316029>. Fecha de acceso: 21 oct. 2022. DOI: 10.1093/bjs/znab183ca
dc.identifier.issn0007-1323ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/3462
dc.descriptionThis report was funded by a National Institute for Health Research (NIHR) Global Health Research Unit Grant (NIHR 16.136.79), Association of Coloproctology of Great Britain and Ireland, Bowel & Cancer Research, Bowel Research UK, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, Medtronic, NIHR Academy, The Urology Foundation, Sarcoma UK, Vascular Society for Great Britain and Ireland, Yorkshire Cancer Research, and the MRC Health Data Research UK (HDRUK/CFC/01), an initiative funded by UK Research and Innovation, Department of Health and Social Care (England) and the devolved administrations, and leading medical research charities. L.B.M. and G.V.G. also acknowledge the Wellcome Trust 4-year studentship programme in mechanisms of inflammatory disease (MIDAS; 215182/Z/19/Z). The funders had no role in study design, data collection, analysis and interpretation, or writing of this report. The views expressed are those of the authors and not necessarily those of the National Health Service, the NIHR, or the UK Department of Health and Social Care.en
dc.description.abstractSince the beginning of the COVID-19 pandemic tens of millions of operations have been cancelled1 as a result of excessive postoperative pulmonary complications (51.2 per cent) and mortality rates (23.8 per cent) in patients with perioperative SARS-CoV-2 infection2. There is an urgent need to restart surgery safely in order to minimize the impact of untreated non-communicable disease. As rates of SARS-CoV-2 infection in elective surgery patients range from 1–9 per cent3–8, vaccination is expected to take years to implement globally9 and preoperative screening is likely to lead to increasing numbers of SARS-CoV-2-positive patients, perioperative SARS-CoV-2 infection will remain a challenge for the foreseeable future. To inform consent and shared decision-making, a robust, globally applicable score is needed to predict individualized mortality risk for patients with perioperative SARS-CoV-2 infection. The authors aimed to develop and validate a machine learning-based risk score to predict postoperative mortality risk in patients with perioperative SARS-CoV-2 infection.en
dc.format.extent19ca
dc.language.isoengca
dc.publisherOxford University Pressca
dc.relation.ispartofBritish Journal of Surgeryca
dc.relation.ispartofseries108
dc.relation.urihttps://academic.oup.com/bjs/article/108/11/1274/6316029ca
dc.rights© This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.en
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.otherCures perioperatòriesca
dc.subject.otherProcediments quirúrgicsca
dc.subject.otherOperatiusca
dc.subject.otherMortalitatca
dc.subject.otherAprenentatge automàticca
dc.subject.otherSars-cov-2ca
dc.subject.otherCuidado perioperatorioes
dc.subject.otherProcedimientos quirúrgicoses
dc.subject.otherOperativoes
dc.subject.otherMortalidades
dc.subject.otherAprendizaje automáticoes
dc.subject.otherSars-cov-2es
dc.subject.otherPerioperative careen
dc.subject.otherSurgical proceduresen
dc.subject.otherOperativeen
dc.subject.otherMortalityen
dc.subject.otherMachine learningen
dc.subject.otherSars-cov-2en
dc.titleMachine learning risk prediction of mortality for patients undergoing surgery with perioperative SARS-CoV-2: the COVIDSurg mortality scoreen
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc61ca
dc.subject.udc616.9ca
dc.identifier.doihttps://dx.doi.org/10.1093/bjs/znab183ca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir