Show simple item record

dc.contributor.authorParedes, Virginia
dc.contributor.authorSalvagni, Emiliano
dc.contributor.authorRodriguez Castellón, Enrique
dc.contributor.authorGil Mur, Francisco Javier
dc.contributor.authorManero Planella, José María
dc.date.accessioned2020-05-12T15:08:20Z
dc.date.available2020-05-12T15:08:20Z
dc.date.issued2014-06-09
dc.identifier.citationParedes, Vanessa; Salvagni, Emiliano; Rodriguez Castellón, Enrique [et al.]. Study on the use of 3-aminopropyltriethoxysilane and 3-chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti-Nb-Hf alloy. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2015, 103(3), p. 495-502. Disponible en: <https://onlinelibrary.wiley.com/doi/abs/10.1002/jbm.b.33226>. Fecha de acceso: 12 may. 2020. DOI: 10.1002/jbm.b.33226ca
dc.identifier.issn1552-4981ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/1521
dc.description.abstractA biocompatible new titanium alloy Ti–16Hf–25Nb with low elastic modulus (45 GPa) and the use of short bioadhesive peptides derived from the extracellular matrix have been studied. In terms of cell adhesion, a comparative study with mixtures of short peptides as RGD (Arg‐Gly‐Asp)/PHSRN (Pro‐His‐Ser‐Arg‐Asn) and RGD (Arg‐Gly‐Asp)/FHRRIKA (Phe‐His‐Arg‐Arg‐Ile‐Lys‐Ala) have been carried out with rat mesenchymal cells. The effect of these mixtures of short peptides have already been studied but there are no comparative studies between them. Despite the wide variety of silane precursors available for surface modification in pure titanium, the majority of studies have used aminosilanes, in particular 3‐minopropyltriethoxysilane (APTES). Nevertheless, the 3‐chloropropyltriethoxysilane (CPTES) is, recently, proposed by other authors. Unlike APTES, CPTES does not require an activation step and offers the potential to directly bind the nucleophilic groups present on the biomolecule (e.g., amines or thiols). Since the chemical surface composition of this new alloy could be different to that pure titanium, both organosilanes have been compared and characterized by means of a complete surface characterization using contact angle goniometry and X‐ray photoelectron spectroscopy.ca
dc.format.extent20ca
dc.language.isoengca
dc.publisherWileyca
dc.relation.ispartofJournal of Biomedical Materials Research Part B: Applied Biomaterialsca
dc.relation.ispartofseries103;3
dc.rights© 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 103B:495–502, 2015.ca
dc.subject.otherAliatgesca
dc.subject.otherMaterials biomèdics
dc.subject.otherPèptids
dc.subject.otherCèl·lules
dc.subject.otherBioquímica
dc.subject.otherAdhesius
dc.subject.otherAleaciones
dc.subject.otherMateriales biomédicos
dc.subject.otherPéptidos
dc.subject.otherCélulas
dc.subject.otherBioquímica
dc.subject.otherAdhesivos
dc.subject.otherAlloys
dc.subject.otherBiomedical materials
dc.subject.otherPeptides
dc.subject.otherCells
dc.subject.otherBiochemistry
dc.subject.otherAdhesives
dc.titleStudy on the use of 3‐aminopropyltriethoxysilane and 3‐chloropropyltriethoxysilane to surface biochemical modification of a novel low elastic modulus Ti–Nb–Hf alloyca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/acceptedVersionca
dc.embargo.termscapca
dc.subject.udc57ca
dc.identifier.doihttps://dx.doi.org/10.1002/jbm.b.33226ca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record