Mostrar el registro sencillo del ítem

dc.contributor.authorColombari, Ruggero
dc.contributor.authorNeirotti, Paolo
dc.date.accessioned2025-01-31T09:22:11Z
dc.date.available2025-01-31T09:22:11Z
dc.date.issued2023
dc.identifier.citationColombari, Ruggero; Neirotti, Paolo. Leveraging Frontline Employees’ Knowledge for Operational Data-Driven Decision-Making: A Multilevel Perspective. IEEE Transactions on Engineering Management, 2023, 71, p. 13840-13851. Disponible en: <https://ieeexplore.ieee.org/abstract/document/10223309/citations#citations>. Fecha de acceso: 31 ene. 2025. DOI: 10.1109/TEM.2023.3291272ca
dc.identifier.issn0018-9391ca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/4708
dc.descriptionMinistero dell'Istruzione, dell'Università e della Ricerca (Grant Number: TESUN-83486178370409).
dc.description.abstractWith the digitalization of manufacturing, firms can now increasingly access and analyze data in real-time, enabling data-driven decision-making (DDM) also at the operational level. Using a multilevel perspective and a mixed-methods research, this article aims to test whether production workers’ involvement (organizational level) and frontline managers’ competency (individual level) are associated with the use of operational DDM. The results of the regression models based on a survey of Italian auto suppliers show that high-involvement lean production practices are associated with a higher probability of DDM adoption when controlling for Team Leaders’ and Supervisors’ competency level, which have a positive moderation effect. Triangulated with qualitative interview data, these findings suggest that firms with skilled frontline managers are more likely to adopt DDM as they can leverage their production workers’ context-dependent knowledge for sense-making, information processing, and knowledge creation. Also, the moderation effect is stronger for Team Leaders, suggesting a central role for them in firms’ digitalization. This study contributes to literature with a socio-technical model that describes operational DDM by integrating organizational and individual dimensions into the data-information-knowledge-decision-making cycle. Organizational and individual implications of this skill-biased technological and organizational change are discussed, and recommendations are offered to managers and education policymakers.ca
dc.format.extent12ca
dc.language.isoengca
dc.publisherIEEE Xploreca
dc.relation.ispartofIEEE Transactions on Engineering Managementca
dc.relation.ispartofseries71
dc.rights© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ca
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.otherEconomiaca
dc.subject.otherEconomíaca
dc.subject.otherEconomyca
dc.titleLeveraging Frontline Employees’ Knowledge for Operational Data-Driven Decision-Making: A Multilevel Perspectiveca
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc33ca
dc.identifier.doihttps://dx.doi.org/10.1109/TEM.2023.3291272ca


Ficheros en el ítem

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/
Compartir en TwitterCompartir en LinkedinCompartir en FacebookCompartir en TelegramCompartir en WhatsappImprimir