Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo
Author
Garrido, Victoria
Piñero Lambea, Carlos
Rodriguez Arce, Irene
Paetzold, Bernhard
Ferrar, Tony
Weber, Marc
Garcia-Ramallo Pla, EVA
Gallo, Carolina
Collantes, María
Peñuelas, Ivan
Serrano, Luis
Grillo, Maria-Jesus
Lluch, Maria
Publication date
2021ISSN
1744-4292
Abstract
Bacteria present a promising delivery system for treating human diseases. Here, we engineered the genome-reduced human lung pathogen Mycoplasma pneumoniae as a live biotherapeutic to treat biofilm-associated bacterial infections. This strain has a unique genetic code, which hinders gene transfer to most other bacterial genera, and it lacks a cell wall, which allows it to express proteins that target peptidoglycans of pathogenic bacteria. We first determined that removal of the pathogenic factors fully attenuated the chassis strain in vivo. We then designed synthetic promoters and identified an endogenous peptide signal sequence that, when fused to heterologous proteins, promotes efficient secretion. Based on this, we equipped the chassis strain with a genetic platform designed to secrete antibiofilm and bactericidal enzymes, resulting in a strain capable of dissolving Staphylococcus aureus biofilms preformed on catheters in vitro, ex vivo, and in vivo. To our knowledge, this is the first engineered genome-reduced bacterium that can fight against clinically relevant biofilm-associated bacterial infections.
Document Type
Article
Document version
Published version
Language
English
Subject (CDU)
57 - Biologia
578 - Virologia
616.9 - Malalties infeccioses i contagioses. Febres
Keywords
Bacteris
Genoma
Staphylococcus aureus
Bacterias
Genoma
Staphylococcus aureus
Bacteria
Genome
Staphylococcus aureus
Pages
20
Publisher
EMBO Press
Collection
17;
Is part of
Molecular Systems Biology
Citation
Garrido, Victoria; Piñero-Lambea, Carlos; Rodriguez-Arce, Irene [et al.]. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Molecular Systems Biology, 2021, 17, e10145. Disponible en: <https://www.embopress.org/doi/full/10.15252/msb.202010145>. Fecha de acceso: 16 dic. 2021. DOI: 10.15252/msb.202010145
This item appears in the following Collection(s)
- Ciències Bàsiques [30]
Rights
2021 - The Authors. Published under the terms of the CC BY4.0 license.
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/