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Abstract: Statement of problem: Nowadays, milling is still the gold standard for fabricating indirect
restorations, but to overcome its disadvantages, there are alternatives, such as 3D printing. Purpose:
This study aimed to compare the gaps between the prepared tooth and milled and printed onlays
fabricated with the same CAD design. It also aimed to determine the gap reproducibility across
onlays fabricated by 3D printing and milling. Methods: A resin tooth was prepared for an onlay. After
scanning the preparation, an onlay was designed with proprietary dental software. Next, 22 onlays
were milled in a graphene-reinforced PMMA disc (Group 1), and 22 onlays were 3D-printed with
a hybrid composite material (Group 2). After that, all fabricated restorations were scanned and
superimposed on the scanned prepared resin tooth. Subsequently, a specific software was used to
measure the margin, central, and intaglio-located gap between the milled or printed restoration
and the preparation. Finally, measurements were compared with a multifactor analysis of variance.
Results: The results demonstrated that printed onlays (Group 2) adapted better to the prepared tooth
than the milled ones (Group 1) (p < 0.05). The comparison of standard deviations showed the better
gap reproducibility of printed onlays (p < 0.05). Conclusion: This study concluded that the printed
onlays adapted significantly better to the prepared tooth than the milled onlays. Printed onlays also
showed significantly better gap reproducibility.

Keywords: 3D-printed onlays; milled onlays; indirect restoration; resin; graphene

1. Introduction

Loss of dental tissue is a common consequence of caries, erosion, abrasion, wear,
fracture, or a combination of those factors. Nowadays, highly developed restoration
materials and adhesive dentistry allow preparation and placing direct or indirect partial
restorations instead of full crowns, which are more invasive [1–3].

There are no significant differences in longevity between direct and indirect restora-
tions, so both might be utilized for replacing missing tooth structures. However, direct
restorations are more prone to suffer from future filtration and generate more stress in the
cavity’s remaining walls due to the shrinkage of polymerization [3]. Indirect restorations
are more useful for replacing more significant amounts of missing tooth structure in more
significant cavities because the shrinkage of polymerization-generated stress only appears
in the cement layer and, therefore, is minimized in the preparation cavity walls [2]. Indirect
partial restorations need tooth preparations that provide a minimum thickness of 1.5 to
2 mm, depending on the future restoration material [1,4].

The digital dentistry workflow includes quick and precise intraoral scanning, the
digital on-screen design of the restoration, and design production using milling or 3D print-
ing [4–7]. Even though there seems to be a better adaptation of printed restorations [8–11],
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the subtractive method is still the gold standard for the CAM process, in which the pro-
duction accuracy and precision of the previously digitally created restoration design are
determined by the number of working axes of the computer numerical control machine
and the size of the milling burs. The current techniques allow the milling of almost all types
of material, from the softest ones, such as waxes, to the hardest ones, such as metal [8]. The
most interesting materials regarding indirect partial restoration production are dental ce-
ramics, hybrid materials, and composites. Dental ceramics display better optical properties
and mechanical characteristics but are more prone to fractures and chipping during milling
and after intraoral cementation. They are also more challenging to repair intraorally than
other materials. Hybrid composite materials are an attractive alternative to dental ceramics
because they offer good optical and mechanical properties and are easy to fabricate, cement,
and repair [3,12]. Regarding new materials in digital dentistry, graphene is highlighted
for clinical use in various fields due to its excellent properties [13–20]. Although its use
in indirect restorations still shows mixed reports, it might be beneficial to investigate its
use as a permanent prosthesis [15,16,18–20]. Graphene is a 2D single layer of hybridized
carbon atoms and various graphene-family nanomaterials with different surface properties,
numbers of layers, and sizes [5,13]. Two leading graphene derivatives are graphene oxide
and reduced graphene oxide. Graphene oxide is of interest in dentistry because of its
mechanical properties and excellent biocompatibility [7,17]. Incorporating graphene into
PMMA improves mechanical properties and decreases the degree of contraction during
polymerization [15,16,18–20]. Furthermore, graphene shows good biocompatibility with
soft and hard tissues and reduces the effects of free radicals of the PMMA. It also has
certain antimicrobial adhesion effects due to its hydrophilicity [19,20]. Because of these
advantages, graphene-reinforced PMMA is a promising material for indirect restorations
that can be easily milled.

Nevertheless, milling has some limitations, so micro-cracks may appear in the material
during the milling process, and accessing to the smallest hollow areas or slight undercuts
may be challenging [8,21].

CAM additive methods are promising to overcome some of the limitations of milling.
They are economical in terms of hardware investment and overall production costs. They
also avoid the waste of the non-used material of the disk or the block after milling. Var-
ious technologies exist among the additive production methods, including powder bed
fusion (PBF), fused deposition modeling (FDM), and light curing. Ceramic particles can
be incorporated into the resin matrix of a hybrid composite to improve its mechanical
properties [22–25]. A light-curing hybrid material reinforced ceramically was developed
to manufacture single-tooth restorations with 3D printers (Permanent Crown Resin; Bego
GmbH). After printing, the restoration must be cleaned with isopropyl alcohol and air-
abrasion, post-polymerized, and improved esthetically with composite-resin stains. These
printed restorations are proven to be mechanically and chemically stable, to have appro-
priate biocompatibility, not to release harmful substances, to show a smooth surface that
avoids the adherence of oral cavity bacteria, and to be esthetically pleasant [25,26].

The adaptation of indirect restorations can be assessed via the measurement of the
gap, which is the distance between the prepared tooth’s walls and the restoration’s internal
surface. The size of the gap can highly influence the longevity of the restoration, the
decoloration and degradation of the luting agent, the bacterial leakage, and the ability of
the restoration to withstand loading [7,27]. This study aimed to compare the gaps between
the prepared tooth and graphene-reinforced PMMA milled onlays and hybrid composite
3D-printed onlays fabricated with the same CAD design. It also aimed to assess the gap
reproducibility of onlay indirect restorations made with an additive (3D printer) and a
subtractive method (5-axis milling).
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2. Materials and Methods

This study was conducted in an in vitro environment following the workflow repre-
sented in Figure 1. Ethical approval was registered as TFG-20223-A94 from the Comitè
d’Ètica de Recerca-UIC on 21 December 2022.
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Figure 1. Workflow of study.

2.1. Sample Preparation

An onlay preparation on an upper-right first resin molar was performed with diamond
burs (Conical and Round Diamond Burs 016; Dentsply Sirona, Charlotte, NC, USA) and
polished with discs (Enhance Multi Refill Polishing Discs; Dentsply Sirona) (Figure 2a,b).
Distal cusps were maintained, the heights of mesial cusps were reduced by 3 mm, and
a wall thickness of 2–3 mm was kept. The outer margin of the preparation followed the
design of a chamfer, and a central box of 3 mm depth with an insertion angle of 10◦ was
created in order to be able to look at the future internal adaptation in more difficult zones.
Then, the prepared molar was scanned using an intraoral scanner (Trios3 Move+, 3Shape
A/S). The resulting STL file (Figure 3a,b) was uploaded into proprietary dental CAD
software (Exocad Galway, Exocad GmbH, Darmstadt, Germany) for designing an onlay
with the natural anatomy of the upper first molar adapted to the prepared margin.
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Figure 3. STL file of the prepared tooth. Lingual (a) and occlusal (b) aspect.

2.2. Sample Manufacturing

The STL file of the designed onlay was imported into the milling machine and 3D-
printer CAM software (Preform 3.32.0, Formlabs, Somerville, MA, USA) for production.
For the subtractive manufacturing process, a graphene-reinforced PMMA was used. The
additive method was conducted using a hybrid composite, which is currently an auspicious
material ideal for indirect restorations.

Due to the maximum capacity of one disc, twenty-two onlays (Group 1) were dry-
milled from a graphene-reinforced PMMA block (Acrylgraph; Nuprodent SL; Table 1 with a
5-axis milling machine (K5+; VHF cam-facture AG) (Figure 4). Burs for indirect restoration
fabrication were used. The milled onlays were removed from the disc by cutting the
connections with a bur (Diambconflat end FG M 014; Dentsply Sirona).

Following the sample size of Group 1, another 22 onlays (Group 2) were SLA 3D-
printed (Formlabs Form 3+; Formlabs GmbH, Berlin, Germany) using hybrid composite
material (Permanent Crown Resin A2; Bego GmbH, Bremen, Germany; Table 1) (Figure 5).
The 3D printer parameters were set at a 50-micron layering dimension with a laser power
of 250 mW. After the printing, the restorations were cleaned with isopropyl alcohol for
3 min and air-dried before the post-polymerization process, which consisted of two cycles
of 20 min at 60 ◦C temperature, as recommended by the manufacturer. The excesses were
finally removed with a fine bur (Diambconflat end FGM014; Dentsply Sirona, Mecklenburg
County, NC, USA).

The resulting onlays were not polished or finished. Each onlay of each group was
numbered from 1 to 22 to be followed correctly throughout the process.
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Table 1. Materials.

Product Name Manufacturer City/State/Country Shade Composition Lot Number

Permanent
Crown Resin Bego Bremen, Germany A2

Esterification products of
4,4’-isopropylidene diphenol

(ethoxylated), 2-methylprop-2-enoic
acid, silanized dental glass, methyl

benzoyl formate, and diphenyl
(2,4,6-trimethylbenzoyl) phosphine
oxide. Total proportion of inorganic

fillers (particle size 0.7 µm) is 30–50%
by mass

600,926

Acrylgraph Nuprodent Soneja, Spain A3 Poly(methyl methacrylate)+
Graphene 3 February 2020
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2.3. Digitalization of Samples

A strict scanning protocol to digitalize (1) the original tooth before preparing the
onlay, (2) the prepared resin tooth, (3) all printed and milled onlays, and (4) all printed
and milled onlays on the prepared tooth was performed using an extraoral scanner (Medit
T500; Medit Corp.). Printed and milled onlays were reversibly placed onto a small stick on
its lingual side to facilitate the scanning. When scanning the onlay on the prepared tooth, a
small amount of silicone (Zetalabor; Zhermack GmbH, Marl, Germany) was placed on the
lingual aspect of the prepared tooth to slightly fix every onlay on it during the scanning
process. The part where the silicone was placed was further cut out from the STL in order
to prevent wrong measurements. Forty-six scans were made (44 onlays and the unprepared
and prepared tooth). All scans were saved as STL files and named according to the onlay
numbers and groups.

The alignments of (1) the original tooth and the prepared tooth, (2) the original
and prepared tooth and the onlay, and (3) the onlay and onlay on the prepared tooth
were performed using dedicated software (Version 7.4.5, Open Technologies Software;
OpenTech3D SRL, Rezzato, Italy) to further measure the gap between the fabricated onlay
and the prepared tooth. The gap was assessed by measuring the adaptations between the
onlays and prepared tooth scans. Figure 6 shows the alignment protocol and the possibility
of placing each onlay separately onto the prepared tooth to measure the gap between them
(Figure 6).
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2.4. Evaluation of Adaptation

Adaptation was evaluated by measuring the space between each onlay and the pre-
pared tooth at predefined points at the margin and the internal space using proprietary
software (Limaguide 1.9.1; Limaguide SL, Barcelona, Spain). The STL files of the original
tooth, the prepared tooth, and all 44 onlays were imported into the software. Then, two
perpendicular boxes intersecting at the middle of the tooth were established on the original
tooth. Furthermore, four spheres were fused to a duplicate of the original tooth scan at the
intersection of the outer surface of the original tooth and the previously designed boxes
(Figure 7). When measuring the different samples, the spheres established where to place
the two cut planes, which were positioned at vestibular–lingual and mesial–distal planes of
the tooth through the center of the four spheres. On the vestibular–lingual plane (Figure 8),
the prepared tooth replaced the original tooth without altering the cut plane position. Then,
each onlay was positioned individually on the prepared tooth scan. Seven predetermined
points, named from A to G (Figure 9), were set on the vestibular–lingual plane: two at the
margin, four at the inner area, and one at the center of the preparation. After that, all onlays
were evaluated the same way on the mesial–distal plane. Seven points, named from H to
N, were also set in the same way on the mesial–distal plane: two at the margin, four at the
inner area, and one at the center of the preparation (Figure 9a,b).
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Gap measurements were made for each separate onlay at the predetermined points of
the two cut planes (A–G and H–N) with the measuring tool on Limaguide 1.9.1 software.
The measurements were then uploaded to a spreadsheet (Microsoft Excel; Microsoft, Red-
mond, WA, USA). Means and standard deviations of gap measurements corresponding to
the marginal adaptation (points A, G, H, and N), the inner adaptation (points B, C, E, F, I,
J, L, and M), and the central adaptation (points D and K) of every onlay were calculated.
The resulting means and standard deviations of all samples were subsequently evaluated
statistically.

2.5. Statistical Analysis

After assuring the normal distribution and the homoscedasticity of collected data,
multifactor analysis of variance (ANOVA) and Fisher’s least significance difference (LSD)
posthoc tests were used to compare milled (Group 1) and printed onlays (Group 2) at the
three different measurement spots (margin, inner, and center) using a dedicated statistics
package software (Statgraphics Centurion X; Statgraphics Tehnologies Inc., Plains, VA,
USA). Statistical significance was set at p < 0.05 with a confidence interval of 95%.

3. Results

The gaps between the prepared tooth and 44 onlays, 22 milled (Group 1) and 22 milled
(Group 2), were compared using a multifactor analysis of variance at three spots: the
margin, the inner part, and the central part (Table 2, Figure 10). The calculated means
and standard deviations for the measured gap on each type of onlay at the parts of the
adaptation gap, together with the statistical significances, are shown in Table 3.

Table 2. Analysis of variance for measured gaps of two types on onlays (milled and printed) at
different locations (margin, inner, and central) and their interaction. All data are measured in microns.

Source Sum of Squares Df Mean Square F-Ratio p-Value

MAIN EFFECTS
A: Type 227,327 1 227,327 82.01 0.0000
B: Location 54,414.4 2 27,207.2 9.82 0.0001
INTERACTIONS
AB 15,310.6 2 7655.28 2.76 0.0670
RESIDUAL 349,251 126 2771.83
TOTAL (CORRECTED) 646,303 131
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Figure 10. Means of measured gaps of milled and printed onlays at different locations: interaction
plot with LSD intervals. In printed onlays, in general, the gaps are smaller than in printed onlays. The
biggest discrepancy between the two models is found at the center point, and the smaller discrepancy
between both models is found in the inner locations.
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Table 3. Means ± standard deviations of gap between milled and printed onlays at different studied
locations. p* column indicates ANOVA (LSD results < 0.05). All data are measured in microns.

1. Marginal GAP 2. Inner GAP 3. Central GAP p*

Milled (G1) 216.90 ± 107.45 160.57 ± 67.72 225.73 ± 11.31 <0.05 (1–2, 2–3)
Printed (G2) 137.86 ± 41.33 101.74 ± 58.98 114.60 ± 6.62 >0.05
p* <0.05 <0.05 <0.05

Printed onlays (Group 1) fit significantly better than the milled onlays (Group 2) at the
marginal, inner, and central parts (p < 0.05) (Table 3, Figure 10). The fit at the inner part of
the gap measured in the milled onlays was worse than in the marginal and central parts
(p < 0.05).

It was noticed that the gap reproducibility, determined using the standard deviation
of the measured gaps, was very similar for the milled and printed onlays at the central and
inner parts. However, a lower gap reproducibility was assessed at the marginal part of
the milled onlays compared to the printed onlays, which implied less predictability in the
obtained gap in the milled onlays compared to the printed onlays (Figure 11). The detected
gap reproducibility at the central part of the onlays was significantly lower than at the
inner and marginal parts in both types of onlays, which implied, in both milled and printed
onlays, more predictability in the obtained gap at the central part than at the margin and
inner part.
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Figure 11. Standard deviations of measured gaps of milled and printed onlays at different locations:
interaction plot with LSD intervals. The standard deviations are very similar in both materials at the
center and inner locations while, in the marginal locations, there is a great discrepancy between the
two materials, with the largest standard deviation being present for the milled onlays and a smaller
standard deviation in the printed ones.

4. Discussion

The adaptation of the indirect restoration to the prepared tooth plays a vital role in
longevity. A significant marginal or internal discrepancy may lead to cement dissolution,
microleakage, secondary caries, or restoration fracture. Therefore, obtaining the best adap-
tation of indirect restoration–preparation must be aimed at in order to prevent secondary
complications [1–3,21]. Regarding the ideal and clinically acceptable adaptation, most
researchers report that the clinically acceptable gap should be between 100 and 150 microns,
while other authors state a possible range between 110 and 200 microns [27].

This study used graphene-reinforced PMMA milled onlays and hybrid composite 3D-
printed onlays in order to assess the adaptation of subtractive and additive CAM methods.
These two innovative materials were chosen because of their physical properties and clinical
indications as indirect unitary restorations. This paper demonstrated that printed onlays
adapted better to the prepared tooth than the milled ones and had better gap reproducibility.
The marginal and internal adaptation were assessed and evaluated using a triple scan
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protocol, which is a valid and nondestructive method [8]. Other alternatives to measure
adaptation are described in the literature, such as visual examination, with or without
magnification, tactile probing, or the silicone replica technique [9,21,28]. Nevertheless,
the digital measuring approach may improve accuracy, reproducibility, and the in-depth
performance analysis of the CAD–CAM systems into a fully digital workflow, overcoming
the disadvantages of the analogue techniques.

Even though care was taken to avoid sharp areas in the design, the lower adaptation of
the milled onlays might be attributed to the sharp design of the prepared tooth, which could
lead to difficulties during the milling process because of the burs that cannot assess concave
areas. Although the used 3D printer was not the newest on the market, the adaptation was
very good and clinically acceptable. It might be presumed that the fit could be even more
precise with a smaller layering dimension (30 microns).

A scoping review of the marginal and internal accuracy of milled lithium disilicate
onlay restorations summarized a marginal gap of onlays ranging from 0.041 to 0.086 mm
and an internal gap ranging from 0.092 to 0.096 mm, which is lower than the values found
in this study, where the most significant differences at the measured gaps according to the
location were measured in the marginal areas of both the printed and the milled onlays
(Figure 10). Printed onlays adjusted much better at the marginal spot than the milled
onlays (Figure 11), probably because of the needed milling strategy due to the roundness
of the margin when resin restorations are to be performed. However, the scoping review
condensed many results from various studies using different methodologies, making direct
comparison difficult [29]. Different software with different settings was used in each
study, which made comparison challenging. Exocad Galway proprietary software with the
recommended settings for onlay restorations was used in our study.

Haddadi et al. reported, in their in vitro research, marginal gaps in the milled and
printed crowns made of hybrid composite on extracted teeth of 0.09 mm and 0.07 mm,
respectively [9]. Inherent deficiencies that affect the reliability of the results have been
reported concerning the replica technique used in their research, making a direct com-
parison with our in vitro study difficult [30]. Bae et al. also reported a higher accuracy
when fabricating the inlays using the printing technique (SLA) than that found when using
subtractive methods. A similar scanning protocol and alignment of the resulting STLs to
determine the accuracy were used [8]. Karasan et al. also demonstrated a better internal fit
with printed fixed dental prostheses than with milled ones and the higher predictability and
repeatability of restoration manufacturing when printing [10]. Kakinuma et al. also found
that 3D-printed resin-composite crowns showed a better marginal fit than milled ones [11].
They assessed the marginal and internal fit by sectioning the crowns and inspecting them
under a laser microscope. Our research samples were also sectioned, but digitally, with
the plane cuts being made across the aligned meshes of the prepared abutment and the
restoration. Lerner et al. reported no remarkable differences in marginal fit between milled
and printed zirconia crowns [21]. However, the marginal adaptation was assessed by
using visual analysis and a periodontal probe on a split cast model, which provided more
subjective and less accurate results than the digital measuring results of the paper.

On the contrary, Kim et al. reported the best adaptation results for metal fixed den-
tal prostheses made using the subtractive method compared to additive (selective laser
sintering) and traditional (lost wax and casting) methods. The injected light body silicone
material placed into the cement space was scanned and measured with the appropriate
software, so the replica technique and the digital measuring method were combined to
assess the adaptation of the fixed dental prosthesis [28]. The methodology and the materials
used make the comparison of their results with ours difficult.

Currently, there seems to be a better adaptation of printed restorations [8–11]. How-
ever, no in vivo studies with those printed materials are still available, so it may be difficult
to approve their clinical applicability.

This study has limitations, including the studied material choice and the limited
number of digitally measured points at the marginal and internal gaps. Differences were
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found in comparing graphene-reinforced PMMA and hybrid composite 3D-printed, but
caution must be taken when interpreting the results with other materials. All measuring
points were the same for all samples because of the protocol followed, wherein using four
spheres made the cut plane position reproducible. However, measurements were made
only at determinate spots. This could be improved by measuring the existing area between
the restoration and the prepared abutment.

5. Conclusions

Within the limitations of the present in vitro study, the following conclusions can
be drawn:

1. The printed onlays adapt significantly better to the prepared tooth than milled onlays.
2. A significantly higher gap reproducibility within the group of the printed onlays was

demonstrated.
3. Further research is needed to determine intraorally printed restorations’ longevity

and long-term behavior.
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