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A B S T R A C T   

Aims: Using machine learning algorithms and administrative data, we aimed to predict the risk of being diag-
nosed with several diabetes-related complications after one-, two- and three-year post-diabetes diagnosis. 
Methods: We used longitudinal data from administrative registers of 610,019 individuals in Catalonia with a 
diagnosis of diabetes and checked the presence of several complications after diabetes onset from 2013 to 2017: 
hypertension, renal failure, myocardial infarction, cardiovascular disease, retinopathy, congestive heart failure, 
cerebrovascular disease, peripheral vascular disease and stroke. Four different machine learning (ML) algorithms 
(logistic regression (LR), Decision tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGB)) will be 
used to assess their prediction performance and to evaluate the prediction accuracy of complications changes 
over the period considered. 
Results: 610,019 people with diabetes were included. After three years since diabetes diagnosis, the area under 
the curve values ranged from 60% (retinopathy) to 69% (congestive heart failure), whereas accuracy rates varied 
between 60% (retinopathy) to 75% (hypertension). RF was the most relevant technique for hypertension, 
myocardial and retinopathy, and LR for the rest of the comorbidities. The Shapley additive explanations values 
showed that age was associated with an elevated risk for all diabetes-related complications except retinopathy. 
Gender, other comorbidities, co-payment levels and age were the most relevant factors for comorbidity diagnosis 
prediction. 
Conclusions: Our ML models allow for the identification of individuals newly diagnosed with diabetes who are at 
increased risk of developing diabetes-related complications. The prediction performance varied across compli-
cations but within acceptable ranges as prediction tools.   

1. Introduction 

The burden of Diabetes has been ranked as the eighth cause in the 
ranking of causes of disability-adjusted life years (DALYs) all over the 
world [1,2], accounting for 2.8 % of total DALYs and with an increase of 
more than 148 % in 2019 as compared with the data obtained in 1990 
[2]. Diabetes is one of the most significant factors increasing the risk of 
mortality, morbidity, and disability worldwide, and its economic burden 
demands new ways to curb diabetes healthcare expenditure [3]. 
Furthermore, people with diabetes are at greater risk of additionally 
suffering from cardiovascular diseases, such as heart attack or stroke 
[4–6]; kidney failure [4]; foot ulcers that might lead to amputation 
[7,8]; and functional impairment [9]. 

The literature has widely analysed the impact of micro and 

macrovascular diseases on people with diabetes quality of life [10,11], 
concluding that the quality of life in people with diabetes is affected by 
complications and not by diabetes itself [12], with differences in terms 
of quantitative impact between diabetes-related complications 
[10,12–14]. Given the negative burden that diabetes-related complica-
tions might bear on an individual’s quality of life, mortality [2,15] and 
economic burden [16–18], identifying those individuals at higher risk of 
diabetes mellitus progression might ease targeted prevention programs 
[19,20]. 

Artificial intelligence (AI) can improve diabetes mellitus care and 
diabetes-related complications diagnosis, including improved glucose 
monitoring and automated insulin delivery [21–23]. Three key areas in 
which AI finds widespread use. First, its predictive analytics to identify 
patients who are at high risk for developing diabetes or its 
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complications. By analysing patient data such as age, gender, family 
history, and other health factors, AI can identify patients who are at risk 
and provide early intervention to prevent or delay the onset of diabetes 
or its complications. Moreover, AI can help detect the early signs of 
diabetes-related complications such as diabetic retinopathy, neuropa-
thy, and myocardial infarction through the analysis of large amounts of 
medical images and identify any abnormalities that could indicate the 
presence of these complications. Lastly, AI can help create personalised 
treatment plans for diabetes patients based on their health data. AI al-
gorithms can analyse data from electronic health records, glucose 
monitoring devices, and other sources to identify patterns and recom-
mend personalised treatment plans. Thus, timely and accurate predic-
tion of complications could help implement more specific and targeted 
measures, potentially preventing or slowing down their development. 
Consequently, slowing down the growth of complications would save 
significant economic resources needed for their treatment. 

Hence, this paper aims to predict whether a list of nine diabetes- 
related complications (hypertension, renal failure, myocardial infarc-
tion, cardiovascular disease, retinopathy, congestive heart failure, ce-
rebrovascular disease, peripheral vascular disease and stroke) will 
develop after one, two and three years since diabetes onset, using four 
different machine learning algorithms (logistic regression (LR), Decision 
tree (DT), Random Forest (RF), and Extreme Gradient Boosting (XGB)). 
Moreover, we can assess the prediction performance of these four AI 
approaches and evaluate the prediction accuracy of complications that 
might change over the period considered in case of varying time spans. 

2. Research design and methods 

2.1. Data sources and study population 

We used a large administrative dataset from the Agency for Health 
Quality and Assessment of Catalonia (AQuAS), which combines infor-
mation from several providers, although considering different periods, 
for the Catalan adult population from 2013 to 2017, resulting in 610,019 
observations. The Ethical Review Board approved the study in Hospital 
Clínic, Barcelona (Spain). This database contains primary care, hospi-
talisations, emergency care, mental health hospitalisation, and com-
munity mental health care from 2013 to 2017. Note that the Spanish 
Health System provides universal care. In these files it is collected the 
individual identifier, the health care provider unit (N = 484), the date of 
the visit (length in case of hospitalisations), and all the diagnoses (N =
2,810) and procedures (N = 463) that were administered. In Catalonia, 
the International Classification of Diseases (ICD-9) diagnostic manual 
was used for diagnostic purposes. Diagnoses are shown in an ordinal 
sense, indicating the primary diagnosis for that visit and a list of sec-
ondary diagnoses. Via unique personal identifiers, the information is 
linked between all provider’s datasets but also to some demographic 
information: gender, age, drug co-payment level, which is related to the 
socioeconomic status of their parents, individual nationality, date of 
decease and the sanitary health region they belong to. 

2.2. Problem setting and data pre-processing 

Each patient corresponds to one observation or row in our dataset. 
For each patient, we have demographic information about gender, so-
cioeconomic level, co-payment level, nationality, and sanitary health 
region. Moreover, information on diagnoses and procedures is retained 
at the appearance date. 

Because original data collection is in the event-row format, a pre- 
processing phase is mandatory. Initially, each row corresponds to pa-
tient identification, date, and event, with repeated individual de-
mographic variables. Event information was codified to unique details 
to obtain predictors. For example, the event-row date (event informa-
tion) was transformed into personal information creating two new in-
dividual variables for each patient: the overall number of visits during 

the period and the standard deviation of visit dates. Then, nominal 
variables (diagnoses, procedures, health care, and provider unit) were 
one-hot encoded. If one variable has n categories, n new variables were 
created, assigning one if the patient has that category and 0 if not. For 
instance, the economic level, initially, was a categorical variable with 
four classes and was transformed into four dichotomous variables. 
Continuous variables were kept continuous (age, number of visits and 
the standard deviation of visit dates). 

Next, we build a dummy variable representing the presence of the 
accounted comorbidity (hypertension, renal failure, myocardial infarc-
tion, cardiovascular disease, retinopathy, congestive heart failure, ce-
rebrovascular disease, peripheral vascular disease and stroke1) after 
one-, two- and three-years post-diabetes diagnosis. For each comorbidity 
analysis, we deleted individuals diagnosed with these comorbidities 
before the diabetes diagnosis date. After this processing for the three 
years, the final number of considered individuals was, concerning each 
comorbidity aforementioned: 432,924; 485,747; 487,567; 489,419; 
492,648; 490,762; 490,788; 491,911; and 491,222; respectively. We 
carried out the analysis to for those with available data to cover one to 
three years in the post-diagnosed period (2013–2017). 

2.3. Machine learning algorithms 

Once data is pre-processed, a battery of models is performed. 
Following the standard procedure of previous empirical analyses 
implementing AI algorithms, logistic regression (LR), Decision tree (DT), 
Random Forest (RF), and Extreme Gradient Boosting (XGB) were per-
formed. For interpretability reasons, given that it is considered a base-
line algorithm, we considered the logistic approach in the stacked 
model. The same reason relies on using the DT based on tree-based al-
gorithms. Then, we considered more complex tree-based algorithms that 
avoid overfitting issues (RF and XGB). An 80/20 split of train/test 
samples was carried out for each model. Next, we standardised all var-
iables, and each model was tuned concerning its hyperparameters. 
These hyperparameters allow control of the learning process and should 
be set before the algorithm’s implementation. Cross-validation was used 
in the train set for this hyperparameter setting purpose with a grid 
search paradigm. For DT, RF and XGB, a regular grid was computed with 
five folds. Cross-validation is a known technique to avoid over-fitting 
and over-performed evaluation in ML techniques dividing the dataset 
into k folds and computing k evaluations using one fold for testing and 
the other to train in each iteration. Finally, a stacked model based on 
logistic regression was performed to combine our four models for better 
performance. 

LR is the most common medical research technique for solving 
classification problems using binary outcomes. DT is, among other ap-
plications, a classification ML task based on the divide and conquer 
strategy. The process iterates by splitting the independent variables into 
subsets repeatedly divided into smaller subsets until a stop condition is 
met. To set which variable is split, Information Gain (IG) measuring the 
quality of each possibility is computed, and a variable with maximum IG 
is selected in each iteration. RF combines several decision trees, a re-
striction over what variables and cases are made based on hyper-
parameters setting. The final model classifies instances averaging over 
all tree classifications. This technique overperforms a simple decision 
tree to avoid over-fitting, thus better generalising our training data to 
unseen data. XGB is an ensemble classification algorithm based on a 
combination of several weak trees in a sequential form. The critical point 
is that each tree deals with cases poorly classified in the previous tree 
during the process. Often, this scheme outperforms other techniques 

1 Diabetes-related comorbidities were included depending on their preva-
lence, as Figure A1, Appendix, shows. Dementia, neuropathy, heart failure and 
other vascular diseases were not included given their low prevalence at the long 
timespan (3 years after diabetes diagnosis). 
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with better generalisations. A stacked model is an ensemble machine 
learning algorithm that learns how to best combine the predictions from 
multiple well-performing individual machine learning models. Strong 
calibration [24] was implemented for the stacked models. 

3. Results 

Table A1, Appendix, shows the main descriptive sociodemographic 
variables and unhealthy behaviours (smoking, drinking and BMI cate-
gories). The average age in our sample is 69.56 years old (SD 13.30), 
although diabetes-related complications observe higher average ages, as 
Figure A2, Appendix, shows. 45.67 % are women, 93.68 % are Span-
iards, and 74 % have the lowest co-payment level (10 %). 33.94 and 
27.51 % are overweight or obese, respectively, whereas 84.78 % are 
non-drinkers, and 27.32 % of the sample are current smokers. 

Considering pre-processed steps and the best hyperparameters ob-
tained from cross-validation techniques, the results from applying each 
algorithm to the test set are shown in Fig. 1. In the final stacked model, 
all the measures (the area under the curve (AUC), accuracy and preci-
sion) were above 63 % general performance, regardless of the diabetes- 

related complication. The AUC measure uses a receiver operating 
curve’s characteristic to capture the trade-offs between the actual and 
false-positive rates. Values close to one are preferable. Accuracy con-
stitutes the percentage of correctly predicted data from all the test sets. 
In contrast, precision is related to the rate of correctly predicted data 
within the positive values (presence of the comorbidity). We tested for 
sensitivity to the chosen period before the first diagnosis of the comor-
bidity. Indeed, we considered three alternative spans: 1, 2 and 3 years. 
Fig. 1 shows these performances. The performance hardly changed ac-
cording to the information length. It is better to account for further in-
formation (and diagnoses) in a clinical sense than to rely on shorter 
clinical spans. 

Concretely, for the hypertension analysis, which was the more 
prevalent diabetes-related complication (Figure A1, Appendix), accu-
racy was 75 %, whereas AUC and precision were 66 % and 77 %, 
respectively. In our case, a value of 75 % indicated a moderately 
excellent performance model, which corroborates the rest of the metrics 
information. The AUC was similar for the other comorbidities, ranging 
from 60 % for retinopathy to 69 % for congestive heart failure. 

Next, we computed the relevance of each ML approach for the 

Fig. 1. Performance measures for stacked models and every comorbidity: 1-, 2- and 3-year predictions. 
Note: “hypertension” stands for hypertension; “renalfail” for renal failure; “myocard” for myocardial infarction; “cardiovasc” for cardiovascular disease; “retinop-
athy” for retinopathy; “congestheart” for congestive heart failure; “cerebrovasc” for cerebrovascular disease; “peripheral” for peripheral vascular disease; and 
“stroke” for stroke. 
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stacked model. RF was the most relevant technique for hypertension, 
myocardial and retinopathy, whereas the best model for the rest of the 
comorbidities was the LR. Fig. 2 shows the relevance of each algorithm 
as part of the final stacked model considered for each comorbidity for 
the three years case. We do not report findings for 1-year and 2-year 
spans for redundancy reasons. 

To detect the variables with the highest predicting power, an 
importance variable rank was computed for every algorithm. Fig. 3 
depicts the contribution of the essential variables obtained from the 
weighted relevance of each model in the stacked one to the model’s 
performance. A closer value to 100 indicates the highest variable’s 
importance on performance. The different techniques found that the 
following variables were among the four more relevant factors to predict 
the presence of a comorbidity diagnosis: (i) gender; (ii) some diagnoses; 
(iii) copayment levels; and (iv) age. 

Next, Fig. 4 displays the computed Shapley additive explanations 
values (SHAP) for the three main relevant covariates for the 3-year 
timespan and each comorbidity. These values indicate how a change 
in a covariate would alter the prediction. SHAP values in the graphs 
represent each individual with a point in two different colours. Blue 
points indicate lower values in the covariate, whereas red ones represent 
the higher values for covariates. As for the position in abscise, it con-
stitutes the probability of having the specific comorbidity. The higher 
the SHAP value, the greater the probability of that comorbidity. Like-
wise, the order in the y-axis is in descending order. That is, the higher 

the position, the more relevant for the computation of the SHAP values. 
Feature effects come mainly from individuals’ age and copayment 
levels. Still, other variables related to unhealthier habits also showed 
some relevance (BMI and alcohol consumption). 

4. Conclusions 

Our study used administrative data to detect the most often diabetes- 
related complications along different time spans after a diabetes diag-
nosis. The results showed that RF outperformed the other machine 
learning algorithms for hypertension, myocardial and retinopathy, 
whereas, for the rest of the comorbidities, the best model was the LR. 
The four machine learning methods showed high predicting power, with 
AUC values ranging from 60 % to a maximum of 69 %, depending on the 
diabetes-related complication considered. 

To our knowledge, no prediction models for micro- and macro-
vascular complications exist for individuals considering different time 
spans after a diabetes diagnosis; hence, a comparison with prior work is 
impossible. Still, some authors have already used prediction models for 
individuals with diabetes. The most similar work was that performed by 
Schallmoser et al. (2023) [25]. They used machine learning models to 
predict the risk of developing three micro- (retinopathy, nephropathy 
and neuropathy) and three macro-vascular (peripheral vascular disease, 
cerebrovascular and cardiovascular diseases) complications after five 
years since a diagnosis of diabetes or pre-diabetes. Although the 

Fig. 2. Algorithm relevance within the stacked model for each comorbidity for a 3-year span. 
Note: “hypertension” stands for hypertension; “renalfail” for renal failure; “myocard” for myocardial infarction; “cardiovasc” for cardiovascular disease; “retinop-
athy” for retinopathy; “congestheart” for congestive heart failure; “cerebrovasc” for cerebrovascular disease; “peripheral” for peripheral vascular disease; and 
“stroke” for stroke. 
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forecasted time differed (they only considered the period of five years, 
and we considered one, two and three years since diabetes diagnosis), 
our prediction models for cardiovascular diseases (myocardial infarction 
and congestive heart failure) would potentially outperform their models 
at 5-years since figures are already similar at our three-year timespan to 
theirs (0.69). Their models did better than ours for retinopathy. Still, the 
results are not fully comparable given the different time frames and the 
fact that they grouped diabetes-related macro-vascular complications, 
limiting the comparison at disaggregated levels. 

Similarly, Ljubic et al. (2020) [26] modelled the prediction risk for 
ten diabetes-related complications over nine years. In addition to 
considering a longer time span, comparability is restricted since per-
formance measures are based on a potentially sicker group of people 
with diabetes (four visits to hospitals between diabetes diagnosis and 
diabetes-related complications) who are at higher risk of developing any 
health problem. Moreover, machine learning algorithms differ (Ljubic 
et al. report only the performance metrics for recurrent neural net-
works). Dagliati et al. (2018) [27] focused only on microvascular com-
plications after the first visit to the hospital, not since diabetes diagnosis 
as we do, which outperformed our results when balancing the algo-
rithms, but not in the raw ones. Moreover, our results confirm the role 
that some individual characteristics might pose on the onset of some 
comorbidities, such as the role of age [28,29] with respect to the 
development of macrovascular complications. 

Overall, the prediction performance of our models for individuals 
with diabetes is somehow comparable to the performances reported in 
prior work, with differences between studies explaining differences and 
providing new evidence in the existing literature. As recent systematic 
review literature showed (Gosak et al., 2022) [30], work on applying ML 
algorithms to predict the risk of diabetes-related complications is very 
scarce. Hence, one of the advantages of our study is that we are the first 
to account for different time spans after a diabetes diagnosis, which 
allows us to set short- and medium-term prediction risk models. 
Furthermore, the availability of administrative data, which refers to a 
representative population, allows for a large set of individual informa-
tion (sociodemographics, biomarkers, comorbidities and other items 
included in the clinical history). The information provided here could be 
especially relevant for the clinical setting since it allows for early 
identification of individuals at risk who could benefit from prompt 
treatment, increasing the odds of preventing or delaying diabetes- 
related complications onset. 

This is the first paper that applies different machine learning 
methods to study their prediction performance of diabetes-related 
complications after a diabetes diagnosis and whether it persists over 
different short-term periods. Moreover, our analysis is enriched using a 
large administrative dataset, allowing us to split the sample into nine 
diabetes comorbidities after a diabetes diagnosis. However, some limi-
tations should be mentioned. The main limitations of our study are 

Fig. 3. Main three relevant covariates for each comorbidity. 
Note: “hypertension” stands for hypertension; “renalfail” for renal failure; “myocard” for myocardial infarction; “cardiovasc” for cardiovascular disease; “retinop-
athy” for retinopathy; “congestheart” for congestive heart failure; “cerebrovasc” for cerebrovascular disease; “peripheral” for peripheral vascular disease; and 
“stroke” for stroke. 
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related to the availability of data, mainly due to the lack of data on more 
extended follow-up periods to check whether the pattern observed 
within our timeframe remains in the long term. Likewise, the lack of a 
longer follow-up period in case of a possible change in the characteris-
tics of the diabetic population may lead to a dataset shift bias for the 
models’ applicability. Second, we did not include information on blood 
glucose measurements since this information was not available for all 
individuals and could contain measurement errors. For this purpose, we 
ran sensitivity analyses for the three-year period and the most important 
complications, and there was no impact on previous results. Third, our 
analysis is restricted to public healthcare use. However, it is common 
practice among private hospital patients to pick up prescriptions from 
primary public centres. This is probably true for moderate to severe 
patients; we may still lose the milder ones that might be using only 
private resources. 

Overall, AI has the potential to improve diabetes care and help pa-
tients manage their condition more effectively to prevent or delay dia-
betes progression into the development of diabetes-related 
complications. However, it’s important to note that AI is not a substitute 
for medical advice or treatment, and patients should always consult with 
their healthcare providers for any medical concerns. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The data that support the findings of this study are available from the 
Agency for Health Quality and Assessment of Catalonia but restrictions 
apply to the availability of these data, which were used under license for 
the current study, and so are not publicly available. Data are however 
available from the authors upon reasonable request and with permission 
of the Agency for Health Quality and Assessment of Catalonia. 

Acknowledgements 

We thank Antonio Valero from Hospital Clínic of Barcelona and the 
Agency for Health Quality and Assessment of Catalonia for the access to 
the dataset. Toni Mora and David Roche gratefully acknowledge the 
financial support from the PID2021-124067OB-C21. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.diabres.2023.110910. 

References 

[1] Safiri S, Karamzad N, Kaufman JS, Bell AW, Nejadghaderi SA, Sullman MJ, et al. 
Prevalence, deaths and disability-adjusted-life-years (DALYs) due to type 2 
diabetes and its attributable risk factors in 204 countries and territories, 
1990–2019: results from the global burden of disease study 2019. Front Endocrinol 
2022;13:98. 

[2] Vos T, Lim SS, Abbafati C, Abbas KM, Abbasi M, Abbasifard M, et al. Global burden 
of 369 diseases and injuries in 204 countries and territories, 1990–2019: a 
systematic analysis for the global Burden of Disease study 2019. Lancet 2020;396 
(10258):1204–22. 
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