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Abstract: One of the most used rotary files in endodontics is NiTi files due to their superelastic
properties. This property means that this instrument has extraordinary flexion that can adapt to
large angles inside the tooth canals. However, these files lose their superelasticity and fracture
during use. The aim of this work is to determine the cause of fracture of the endodontic rotary
files. For this purpose, 30 NiTi F6 SkyTaper® files (Komet, Germany) were used. Their chemical
composition was determined by X-ray microanalysis, and their microstructure was determined by
optical microscopy. Successive drillings were carried out with artificial tooth molds at 30, 45, and
70◦. These tests were carried out at a temperature of 37 ◦C with a constant load controlled by a high
sensitivity dynamometer of 5.5 N, and every five cycles were lubricated with an aqueous solution
of sodium hypochlorite. The cycles to fracture were determined, and the surfaces were observed
by scanning electron microscopy. Transformation (austenite to martensite) and retransformation
(martensite to austenite) temperatures and enthalpies were determined by Differential Scanning
Calorimeter at different endodontic cycles. The results showed an original austenitic phase with a Ms

temperature of 15 ◦C and Af of 7 ◦C. Both temperatures increase with endodontic cycling, indicating
that martensite forms at higher temperatures, and the temperature must be increased with cycling to
retransform it to austenite. This fact indicates the stabilization of martensite with cycling, which is
confirmed by the decrease in both transformation and retransformation enthalpies. The martensite is
stabilized in the structure due to defects and does not retransform. This stabilized martensite has no
superelasticity and, therefore, fractures prematurely. It has been possible to observe the stabilized
martensite by studying the fractography, observing that the mechanism is by fatigue. The results
showed that the files fracture earlier the greater the angle applied (for the tests at 70◦ at 280 s, at 45◦

at 385 s, and at 30◦ at 1200 s). As the angle increases, there is an increase in mechanical stress, and,
therefore, the martensite stabilizes at lower cycles. To destabilize the martensite, a heat treatment can
be carried out at 500 ◦C for 20 min, and the files recovers all its superelasticity.

Keywords: stabilized martensite; fatigue; superelasticity; NiTi; endodontics files

1. Introduction

NiTi alloys are commonly used in endodontics because they combine superelasticity
with excellent corrosion resistance, wear properties, and good biocompatibility [1–4]. The
superelasticity is especially useful in endodontics because the alloy presents an important
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elastic deformation, and this allows large flexures in the dental canals [5–7]. This fact allows
the instruments used in endodontics to be adapted to the canals of the teeth.

Superelasticity results from a stress-induced phase transformation. The formation of
a martensitic phase in the alloy is initiated by cooling the material below Ms, which can
be defined as the temperature at which the martensitic transformation begins. Mf is the
temperature at which the martensitic transformation ends. This transformation is reversible,
being As the temperature at which the reverse austenitic transformation (Martensite→
Austenite) starts upon heating, and Af the temperature at the end of the reverse austenitic
transformation [8–10]. The austenitic phase has an elastic deformation of approximately
15%, in contrast to conventional metals, whose elastic deformation is usually 0.2%. This
excellent elastic behavior is due to the fact that austenite when subjected to stress, produces
a stress-induced martensitic transformation. When this stress is relaxed, the martensite
is elastically retransformed to austenite. However, the martensitic phase, if the stress
continues to be applied, causes plastic deformation until fracture [10–12].

Despite the advantages of superelasticity in NiTi alloy, instrument fracture remains
a major clinical concern. Fractures of endodontic instruments can occur in two ways:
torsional fracture and bending fracture/fatigue [13]. The first occurs when the tip of the
instrument remains locked in the root canal while its shaft continues to rotate. This situation
exceeds the elasticity limit of the instrument, leading to plastic deformation and, finally,
fracture. The other type of fracture is caused by stress and fatigue of the metal, resulting in
a flexural fracture, and occurs mainly in narrow and curved canals [14].

Strategies have been implemented to increase the efficiency and safety of NiTi ro-
tary files, including improvements in the manufacturing process or the use of new alloys
that provide superior properties [15,16]. The mechanical properties and behavior of the
NiTi alloy vary according to its composition and thermal/mechanical treatment during
manufacturing [13,17,18]. Among these improvement treatments, we can find electropol-
ishing [19], M-wire alloys [20], CM-Wire [21], R-Phase [22], Blue-Wire [23], Gold-Wire [24],
Max-Wire [25], Fire-Wire [26], among others. Thermomechanical treatment of NiTi alloy
allows a change in the phase composition leading to the appearance of martensite or
R-phase under clinical conditions. Whilst M-Wire and R-phase instruments maintain an
austenitic state, CM Wire, and the Gold and Blue heat-treated instruments, is composed
of substantial amounts of martensite [22]. The austenitic instruments possess superelastic
properties and reveal high torque values at fracture. Thus, these files are appropriate to
shape straight or slightly curved root canals. Additionally, the use of austenitic alloy in
pathfinding instruments may compensate for the decreased torque resistance caused by
the smaller diameter of these files.

The aim of this study is to determine the fracture mechanisms of NiTi endodontic
rotary files and how they influence the angles of application on the tooth. In other words,
the reasons why over time, the endodontic rotary files lose their superelasticity until
they fracture. Another objective would be to determine a treatment that could restore
superelasticity before fracture to extend the life of endodontic burs.

The hypothesis of the contribution is that the austenite phase transforms to martensite
and causes a loss of superelasticity. As the angle of application increases, the bending
stresses are higher and will fracture earlier. It is possible to design a heat treatment that
restores the austenite in the burs and gives back superelastic properties.

2. Materials and Methods
2.1. Materials

NiTi endodontic rotary files near equiatomic compositions were studied. The chemical
compositions were determined by means of X-Ray microanalysis (Oxford Instrument X10,
Oxford, UK) being: 51.2% Ni and 48.8% Ti (in atomic percentage).

The endodontic files used are of the brand F6 SkyTaper® files (Komet Lemgo, Nor-
drhein Westfalen, Germany) (Figure 1) and are placed on a motor X-Smart®of Dentsply
Sirona (Charlotte, NC, USA) with a speed of 300 rpm and torque of 2.2 Ncm.
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Figure 1. F6 SkyTiper@ 25.06 endodontic rotary files used.

Endodontic cycles are performed on molds made of polyamide with properties very
similar to the natural tooth obtained by 3D printing with canals with angles of 30, 45, and
70◦. These are the most common tooth canal angles in patients [27]. The file force on the
mold was 5.5 N, and they were lubricated every 5 cycles with an aqueous solution of 5%
sodium hypochlorite. For the determination of the force to which the file is subjected on
the mold, different measurements were made on 25 clinicians of the Clínica Universitaria
Odontológica Alfonso X el Sabio, obtaining a mean value of 5.5 N with a standard deviation
of 2.8 N. The high precision dynamometer was Adamel Lombhragy (X1234, Lyon, France)
and is adjusted to the hand of the clinician who will do the tests with maximum force
control adjusted. The diagrams of the molds used can be seen in Figure 2.
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Figure 2. Scheme of the different molds for the endodontics tests. 30◦, 45◦, and 70◦ angles have been
used, which are common angles in the clinic [27].

For the test, it was important that the lubrication of the file was as similar as possible
to what occurs in the clinic, and for this purpose, the instrument was soaked in the aqueous
solution, which was at 37 ◦C. This meant that the variations in the temperature of the file
were negligible, as this could affect the phases present in the file if they were overheated.

Cycles of 60, 150, and 200 s, and even fractures were made. Once the drills had
reached these cycles, the transformation and retransformation temperatures and enthalpies
were determined by calorimetry. The fracture files were also observed by microscopy to
determine the phases present and the fractography.

2.2. Calorimetric Tests

Five samples for each endodontic rotary file and for each thermal treatment were ana-
lyzed, all of them 25.0 mm long and 0.46 mm in diameter. The transformation temperatures
were measured by means of a calorimeter Melcor S 10. The calorimetric system used was
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based on a flow calorimeter, which measured differential signals (∆T) by means of thermo-
couples batteries. The temperature was measured by means of a standard Pt-100 probe. All
signals were digitalized through a multichannel recorder and linked to a microcomputer.
Ms and As transformation temperatures occur when there is a sudden increment in the
calorimetric signal. In the same way, the final temperatures, Mf and Af, were determined
when the calorimetric signal returned to the baseline [28]. The enthalpies were calculated
as the area of the transformation and retransformation curves. For this calculation, the
samples were weighed on a precision balance (sensitivity of 0.00001 g) (Sartorius 298-s,
Barcelona, Spain).

2.3. Microstructures

The samples were polished metallographically with diamond paste from 5 mm to
0.1 mm and etched with an acidic mixture (17 mL of HF + 33 mL of HNO3 + 50 mL
of H2O). The microstructures were observed using optical and scanning (SEM) using a
JEOL 6400 (JEOL, Tokyo, Japan) and JEOL 1200 EXII. Microscopy was equipped with a
dispersive energy x-ray microanalysis (Oxford Instruments, Oxford, UK), which was used
for determining the chemical composition.

2.4. Heat Treatments

Heat treatments were carried out at different heat treatment temperatures in an electric
furnace (Hobersal, Caldes de Montibui, Spain) at 300, 400, and 500 ◦C for 20 min in an
attempt to de-anneal the martensite. Subsequently, they were quenched in water at room
temperature, and the transformation temperatures were determined by calorimetry.

2.5. Statistical Analysis

The data was statistically analyzed using Student’s t-tests, one-way ANOVA tables,
and Turkey’s multiple comparison tests in order to evaluate any statistically significant
differences between the sample groups. The differences were considered significant when
p < 0.05. All statistical analyses were performed with MinitabTM software (Minitab release
13.0, Minitab Inc., State College, PA, USA).

3. Results

The metallography of the original file corresponds to the austenitic phase, as can be
seen in Figure 3. This microstructure is as expected since the transformation temperatures
obtained by calorimetry were Ms = 15 ◦C and Mf = 5 ◦C, and for the transformation from
martensite to austenite, they were As = −3 ◦C and Af = 7 ◦C. The transformation enthalpies
were 4342 J/g, and for the retransformation, −4312 J/g.
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The microstructure of the fractured file can be seen in Figure 4, where the marten-
sitic phase can be seen. No preferential direction is observed since the stresses are not
uniaxial [29,30].

Table 1 shows the fracture cycles of the files as a function of the application angle. It
can be observed that as the angle increases, the fracture cycles are lower because the drill
exerts higher bending stresses than the rest. In the fractured samples, it was not possible
to obtain the temperatures or the transformation enthalpies since there is no martensitic
transformation when cooling the sample or retransformation to austenite when heating
up to 250 ◦C, which is the limit of the calorimeter used. This is due to the fact that the
martensite that can be observed in Figure 4 is anchored in defects and is stable when heating
to 250 ◦C; therefore, the file loses the superelastic properties of the austenitic phase [31].

Table 1. Cycles to fracture for the F6 SkyTaper® file at different angles.

Angle Cycles (s)

30 1250

45 760

70 250

The endodontic tests were stopped at different cycles to see the evolution of the
transformation temperatures, and the transformation enthalpy. In Table 2, it can be seen
that there is a statistically significant increase in the Ms and Af temperatures with respect
to the original burs. Table 2 also shows that both the transformation and retransformation
enthalpies decrease as the file is cycled. This enthalpy indicates the value of heat absorbed
for austenite to martensite trans-formation (endothermic) and heat expelled for martensite
to austenite retransformation (exothermic). This reduction in enthalpies indicates that the
amount of transformed or retransformed material is lower, indicating the presence of a
phase (stabilized martensite) not susceptible to transformation [32–34].

Table 2. Transformation and retransformation temperatures and enthalpies for different cycles at
different angles.

Angle Cycles (s) Ms Mf As Af HA–M (J/g) HM–A (J/g)

30 0 15 5 −3 7 4.342 −4.312

30 60 16 6 −4 9 4.001 −3.987

30 150 16 7 −1 10 3.275 −3.128

30 200 17 9 0 11 2.908 −2.897

45 0 15 5 −3 7 4.342 −4.312

45 60 16 3 −5 9 3.765 −3.234

45 150 17 1 −4 12 2.001 −2.289

45 200 20 −5 −9 14 1.621 −1.713

70 0 15 5 −3 7 4.342 −4.312

70 60 18 4 −4 10 2.009 −2.347

70 150 20 3 −2 15 1.512 −1.298

70 200 23 2 1 19 1.110 −1.112

Fractography studies show a rotary fatigue fracture. Figure 5A shows the beginning
of the fracture, and we can indicate the crack initiation zone that is generated on the surface
of the milling cutter. It can be seen how the first zone is with great deformation, showing a
worn surface. This wear occurs because the cracked surfaces rub against each other in the
milling process. This zone is followed by the crack propagation zone, which in the samples
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we have observed, is generated at about 500 µm from the place of crack nucleation. This
zone can be seen in Figure 5B, where the crack advance marks can be seen, indicating the
direction of propagation. The crack propagation causes the effective area that supports
the milling stresses to become smaller and smaller until it cannot support the stresses, and
the final fracture occurs. Figure 5C shows the ductile fracture of NiTi. In the different
fractographies, pitting can be seen, which occurs because the NiTi is subjected to high
mechanical stress on this fracture surface in an environment of lubrication with saline
solution and therefore generates characteristic pitting due to its rounded shape. Figure 5D
shows the area most exposed to this electrochemical corrosion since it is the initial area that
has suffered great wear and therefore stored more residual stress and, in turn, more contact
time with the aggressive solution. In this zone, it can be seen that pitting occurs around the
grain boundaries [35,36]. This is due to the fact that these are the areas with the highest
internal energy of the metal. It is well known that the places most susceptible to pitting are
those with the highest mechanical stress, and these correspond to the grain boundaries of
the areas with the highest wear [37].

The heat treatments were carried out with the purpose of eliminating the slip and
helicoidal dislocations and twins produced by clinical practice. In this way, the martensite
is released and can be retransformed to austenite. The samples where the heat treatments
were performed were the fractures of the drills to ensure the highest number of defects.
The heat treatments for 20 min at different temperatures gave the results shown in Table 3.

Table 3. Transformation temperatures and enthalpies for each heat treatment for 20 min.

Angle Temperature (◦C) Ms Mf As Af HA–M (J/g) HM–A (J/g)

30 300 - - - - - -
30 400 46 26 4 43 4.001 −3.987
30 500 15 3 −3 10 2.178 −2.136
45 300 - - - - - -
45 400 37 16 4 33 2.934 −2.923
45 500 16 3 −5 9 4.365 −4.234
70 300
70 400 28 0 −3 24 1.621 −1.713
70 500 14 6 −2 7 4.333 −4.322
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Figure 5. Fractography of the endodontic rotary file after 1250 cycles. (A) Location of crack initiation
on the file surface. (B) Crack propagation towards the inside of the file. The striations indicate the
direction of crack propagation. (C) Ductile fracture of the cutter with significant plastic deformation.
(D) Corrosion pitting on the fracture surface. The pitting is observed in the direction of crack
advancement, as these are the areas of highest energy.

4. Discussion

The microstructure of the endodontic rotary file in its original state is completely
austenitic, which is the phase that provides superelasticity to the instruments. This fact
is corroborated by the Ms temperatures, which are lower than the oral temperature of 37
◦C. When mechanical stress is applied when the bur is introduced into the tooth canal
for endodontic treatment, a new phase is generated, which is stress-induced martensite.
This phase returns to the austenitic phase when the stress disappears, returning to its
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original position and to its original phase, which is austenite. This property is called
superelasticity [38,39].

With the passing of the endodontic rotary files cycles and the successive applications
of stress, some stress-induced martensitic plates become anchored in the defects, such
as dislocations or grain boundaries, and do not retransform to the original austenitic
phase [40–42]. This fact causes a loss of the superelasticity property. The appearance of
these martensitic plates, which are called stabilized, do not present an elastic deformation
higher than 0.3% and, therefore, gradually lose the superelasticity of the drill and, therefore,
its toughness [41,43].

The appearance of the stabilized martensite can be confirmed by the increase in the
Ms temperature; that is to say, as the cycles pass, the martensite is generated more easily
since the stabilized martensitic plates act as nucleation points of the new plates. It is for
this reason that the Ms temperature increases, reaching values higher than 37 ◦C—the
temperature of the human body-. Consequently, the file no longer shows superelasticity,
but rather the instrument behaves in a plastic manner since the microstructure has a high
content of non-superelastic stabilized martensite phase. As the proportion of stabilized
martensite increases, the file becomes more and more brittle until it breaks [44].

The same fact is verified with the increase in the Af temperature, i.e., the temperature
returns to the austenitic phase due to heating. Calorimetry studies show that fractured files
present temperatures Af higher than the initial one since the system tries to heat up more
to achieve the retransformation of martensite to the austenitic phase. The temperature
increase is necessary to unanchor some plates that have been retained by the defects, and
that is why more energy input is needed to achieve austenite. Some plates are so stabilized
that retransformation is no longer achieved, but their stability does not allow, not even
by the effect of heat, the reappearance of the austenitic phase, which is the superelastic
phase [45].

This percentage of stabilized martensitic phase is confirmed by the decrease in the
enthalpy of transformation from the austenitic phase to the martensitic phase and the
enthalpy of retransformation from the martensitic phase to the austenitic phase. This
decrease in the transformation enthalpies both in the endothermic and exothermic part is
due to the fact that with the cycles, there is more and more stabilized martensite that does
not transform with the temperatures offered by calorimetry [46–48]. There is no absorption
of energy or transfer of transformation or retransformation energy for a phase—stabilized
martensite—which is stable and will not transform [48].

Therefore, from the calorimetric results, we can determine that the cause of the en-
dodontic rotary files failures is the embrittlement of the instruments due to the appearance
of stabilized martensite, which causes the loss of the superelastic capacity of the original
austenitic phase of the NiTi endodontic files.

From the results in Table 2, it can be seen that the files subjected to the higher angles
break earlier, and the differences in the transformation temperatures at the same number of
cycling times can be seen. It can be seen that the temperature changes are greater in the
files that have worked at angles of 70◦. By having to apply greater bending to the drilling,
stress-induced martensite plates are formed more easily, and this leads to the appearance of
a greater number of linear defects in the metal matrix of the milling cutters and, therefore,
the stabilization of the martensite occurs more easily, and therefore, the milling cutters
fracture earlier.

Annealing heat treatments at 300 ◦C are insufficient to cause the stabilized martensite
to transform to austenite since calorimetry does not provide transformation curves. It is at
400 ◦C when the martensite destabilization begins as transformation temperatures start to
be obtained, but still far from the original transformation temperatures. This fact can be
verified by the fact that the values of the enthalpies are approximately 50% of the original
ones, which indicates that the microstructure still has stabilized martensite that does not
transform. It is at a temperature of 500 ◦C for 20 min that the drill recovers the original
transformation temperatures, and therefore the material recovers its superelasticity. The
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heat treatment acts as a process of restoration of its microstructure, of the crystalline defects
(vacancies and dislocations) generated by the use of the file. In other words, the material
recovers its original phase—the austenite—its superelastic capacity without crystalline
defects generated by the drilling process. These results are important for the clinical use
of endodontic rotary files since heat treatments, such as the one performed in this work,
would regenerate the NiTi and could extend the life of the files [49–51].

This research confirms the causes of fractures in endodontic rotary files. We have
been able to demonstrate that the stabilized martensite that is formed with the endodontic
cycles causes the gradual loss of superelasticity. We have also been able to determine the
thermal treatments that prevent this loss of superelasticity, and therefore, heating at 500 ◦C
for 20 min would allow the burs to have their initial properties. The work has limitations
since the molds are made of polymeric material with properties very similar to the tooth,
and the lubrication is carried out simulating that which occurs in clinical practice, and the
forces of 5.5 N are an average value. Therefore, the experimentation may deviate slightly
from clinical reality, but it is sufficient to demonstrate the causes of fracture of superelastic
NiTi endodontic rotary files. Therefore, the hypothesis of the work has been confirmed by
the microstructural and calorimetric experimentation of the files.

A limitation of the present research is that we have only carried out the studies with
one milling cutter design and a given chemical composition. Design changes could change
the results as the shear capacity and stress distribution in NiTi are modified [22,25,26].
Chemical composition performs a very important role in the behavior, although most of
the burs used in endodontics have chemical compositions that are equal or very close, as
in this case. The variation in the chemical composition will modify the transformation
temperatures and, therefore, the cycles for the formation of stabilized martensite. The
reason why Ni and Ti equiatomic alloys are used is that for these compositions’ austenite
is obtained at room temperature and at a body temperature of 37 ◦C [52,53]. Increases
in titanium can lead to the appearance of precipitates in fatigue or high-stress processes,
which cause the loss of superelastic properties, similar to what happens with stabilized
martensite. In the same way, nickel-rich precipitates have been obtained for nickel-rich
alloys that cause brittle fractures [54].

5. Conclusions

From the experimental results, it has been shown that the higher the angle of applica-
tion of the endodontic files, the number of cycles to fracture decrease. It has been observed
that as we increase the cycles at the different angles studied, the presence of stabilized
martensite in the NiTi microstructure increases until fracture. The presence of stabilized
martensite has been verified by the increases in the temperatures Ms and Af and by the
decrease in the values of the transformation and retransformation enthalpies. Stabilization
of the martensite causes the files to lose their superelastic properties, and thus, fracture
occurs prematurely. Heat treatment at 500◦ for 20 min causes the transformation from
stabilized martensite to austenite, and the file returns to superelastic characteristics. This
fact must be considered to increase the life of the endodontic files.
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