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ABSTRACT
The signaling pathways displayed by cancer cells are often composed by the 

same components than the physiological ones, yet the overall result is a pathological 
deregulation. The non-receptor protein tyrosine kinase Src is a good example. Src is 
the first described proto-oncogene and a demonstrated player in cancer progression, 
as it affects proliferation, invasion, survival, cancer stemness, and drug resistance. 
Src activation is linked to poor prognosis in many cancer types, yet mutations in 
this protein are rarely observed. In addition, being a demonstrated cancer target, 
unspecific inhibition of the kinase activity has proven inefficient in clinics since the 
inhibition of Src in non-cancerous cells results in unacceptable toxicity. Thus, there 
is a need for new target regions in Src that could inhibit Src activity only in certain 
cell types, e.g., cancer cells, while maintaining the normal physiological activity in 
healthy cells.

The Src N-terminal regulatory element (SNRE) includes the poorly studied 
intrinsically disordered region with unique sequences for each of the members of the 
Src family. In this perspective, we discuss the non-canonical regulatory mechanisms 
involving the SNRE and their potential use as oncotargets.

INTRODUCTION

Src, the first discovered oncogene, is the leading 
member of the Src family of kinases (SFK) that includes 
Fyn, Yes, Blk, Yrk, Fgr, Hck, Lck, and Lyn. They 
are non-receptor protein tyrosine kinases transducing 
signals from the external environment to intracellular 
pathways essential for normal cell homeostasis [1, 2]. 
The physiological functions regulated by Src include cell 
proliferation and survival, cell shape, cell adhesion to 
other cells and the matrix, and migration. In addition, in a 
cancer context, Src contributes to invasion, angiogenesis, 
survival of metastatic cells, metabolic reprogramming 
[3], regulation of the inflammatory response [4], and 
acquisition of resistance to chemotherapy [5–9].

All SFK share a common domain structure with 
an N-terminal membrane anchoring SH4 domain, and an 
SH3 and an SH2 domain that bind proline-rich sequences 
and phosphotyrosine, respectively, as well as the kinase, 

or SH1 domain. At the C-terminal end, a conserved 
tyrosine residue provides a regulatory site that, when 
phosphorylated, engages in an intramolecular contact with 
the SH2 domain and contributes to stabilizing a closed 
inactive state. The closed state is further stabilized by the 
interaction of the SH3 domain with a proline-rich region in 
the linker connecting the SH2 and SH1 domains (Figure 1).

The SH4 and SH3 domains are separated by a 
long intrinsically disordered region known as the Unique 
domain. In contrast, to the other domains, it shows very 
low sequence homology among the distinct SFK members. 
The disordered regions, including the SH4 domain, and 
the SH3 domain form the Src N-terminal regulatory 
element (SNRE), whose mechanism is far less understood 
than the canonical regulation involving the SH3 and SH2 
domains and tyrosine 530 in the C-terminal tail.

The canonical regulatory mechanisms are based 
on the displacement of the intramolecular inhibitory 
interactions. This can occur through dephosphorylation 
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of tyrosine 530 or by its displacement from the SH2 
domain by interaction with a phosphotyrosine residue 
from another molecule with a higher affinity than the 
intramolecular interaction. Similarly, the inhibitory 
interaction involving the SH3 domain can be replaced 
by an intermolecular interaction with another proline-
rich sequence. Src activation is maintained by the 
phosphorylation of a tyrosine residue in a regulatory 
loop by a second Src molecule. The activation of Src by 
displacement of the intramolecular interactions results in 
the formation of intermolecular complexes, that can act 
as scaffolds recruiting other substrates or may result in 
phosphorylation of additional tyrosine residues, leading to 
a positive feedback loop.

The canonical Src signaling axes are initiated by 
EGFR and other receptor tyrosine kinases or integrins. 
For example, clustering of integrins results in transient 
FAK dimerization and autophosphorylation that creates 
high affinity binding sites for the Src SH2 domain, 
which causes Src recruiting, activation, and further 
phosphorylation of other FAK tyrosine residues and the 
formation of a stable complex that recruits other FAK-
associated Src substrates [10]. FAK binding involves 
also SH3 domain binding to tandem docking sites [11]. 
Activation of the Src-family tyrosine kinase Hck by HIV 
Nef also implies the displacement of the SH3 domain [12].

In this perspective article, we focus on “non 
canonical” regulation involving the SNRE, although 
the distinction of individual regulation mechanisms is 
rather academic since Src is a functional unit in which 

the individual regions or domains act cooperatively. 
Interestingly, the origin of the unbalance in our 
understanding of the roles of the globular and disordered 
domains is both technical and conceptual. Disordered 
regions are technically more difficult to study than 
globular domains as they resist analysis by X-ray 
crystallography. Fortunately, the continuous advances 
in NMR have alleviated this technical difficulty. Cryo-
electron microscopy cannot provide detailed information 
on the disordered regions, but integration with NMR is 
a promising strategy [13]. The more difficult challenge 
is the (wrong) conceptual perception that a well-folded 
structure is a sine-qua-non requisite for function. This 
perception was based on the extrapolation to the entire 
proteome of the observation that many folded proteins 
lose their activity upon denaturation, disregarding the fact 
that about one-third of eukaryotic proteins are intrinsically 
disordered and another third have long disordered regions 
together with folded domains [14], as in the case of Src 
and other SFKs.

Non-canonical regulatory mechanisms. The role 
of the Unique domain

While the regulatory roles of the SH2 and SH3 
domains in Src family kinases are relatively well 
understood, the function of the intrinsically disordered 
Unique domain is often unappreciated.

In a series of publications our group showed that 
mutations introduced in a region defined based on NMR 

Figure 1: Canonical Src regulation involves the transition from an inactive closed state to an active open form. The role 
of the Unique disordered domain and the SH4 domain, beyond membrane anchoring, is just starting to be understood.
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observations [15] resulted in significant changes in 
physiological processes in which c-Src was involved. This 
region was located next to the singular 64FGG66 motif that 
is also found in the related Src family kinases Fyn and Yes. 
We named it as “Unique Lipid Binding Region” (ULBR) 
because the first in vitro measurements showed that one 
of the effects of mutations in this region was a decrease 
in its capacity to interact with lipids [16]. Initial effects 
were detected in the progesterone-induced Xenopus laevis 
oocytes’ maturation, which requires Src. Expression of 
ULBR Src mutants resulted in similar maturation rates 
as in the controls expressing wild-type Src but, once 
matured, a significant fraction of the oocytes expressing 
mutant Src died, in contrast to the ones expressing wild-
type Src. This was the first indication that the Unique 
domain has a regulatory function and that its effect is cell-
type sensitive [16]. ULBR mutants of human Src were 
tested by expressing the mutants in NIH3T3 and human 
colorectal cancer cell lines overexpressing either wild type 
or ULBR mutants. The ULBR mutants of Src caused a 
reduced transforming capacity as compared to wild type 
Src and showed reduced tumor development in nude mice 
[17]. However, the ULBR mutants did not significantly 
alter the global tyrosine phosphoproteome in colorectal 
cells, suggesting that the effect of the ULBR mutations 
is not a direct inhibition of the kinase activity but has an 
impact on the capacity to phosphorylate specific substrates 
needed for oncological signaling [17].

At the atomic level, the Unique domain is an 
intrinsically disordered region (IDR). This means that it 
does not adopt a single well-defined three-dimensional 
structure, even in its native form [18]. IDRs are very 
abundant in eukaryotes but rarely observed in prokaryotes 
[19]. IDR are most often associated with high-level 
regulation, and is not surprising that they are very 
commonly found in proteins whose deregulation results 
in cancer, cardiovascular or neurodegenerative diseases 
[20]. Despite remaining disordered, the Unique and SH4 
domains form a fuzzy intramolecular complex around the 
SH3 domain [21, 22]. Fuzzy intermolecular complexes 
were introduced by Fuxreiter and Tompa [23] and are 
often the manifestation of the coexistence of multiple 
weak complexes in rapid exchange that modulate the 
conformational ensemble of the disordered region 
while still allowing a very large plasticity and capacity 
to respond to its environment [24]. The intramolecular 
version of fuzzy complexes refers to the interaction of 
disordered regions with a neighbor folded domain, which 
in the case of Src is the SH3 domain. An analysis of 
disordered linker regions in human proteins suggests that 
the SH3 domains may often be nucleating intramolecular 
complexes. Thus, the situation found in Src may be much 
more general [25]. The plasticity of the disordered regions 
may have a special role in the context of cell signaling 
as “environmental readers” because the weak interactions 
shaping their conformational space makes them especially 

sensitive to even small changes in their environment 
and enable the integration of multiple input signals, 
making them “molecular computers”. In this context, 
intramolecular fuzzy complexes provide the interphase 
between the “reading” and “writing” functions of signaling 
kinase cascades, where obviously, the writing function is 
the phosphorylation of specific tyrosine residues in the 
right downstream molecule [26]. The plasticity of the 
disordered regions may be further modulated by post-
translational modifications and alternative splicing [27]. 
The former is favored by the availability of the disordered 
regions to modifying enzymes, while the second is enabled 
by the lack of structural constraints imposed by being part 
of a large, structured domain.

Not surprisingly, the Unique domain of Src has 
several phosphorylation sites that modulate its function. 
The PhosphoSitePlus database lists twelve experimentally 
confirmed serine/threonine phosphorylation sites in 
the Unique and SH4 domains of Src [28]. Serine 17, a 
substrate of PKA and related proteins [29], is preferentially 
phosphorylated in cancer cells [30]. Phosphorylation 
of serine-75, a substrate of various Mitogen-Activated 
Protein Kinases, causes changes in cell growth, 
cytoskeletal reorganization, and mediates ubiquitination 
and degradation of Src [31, 32]. Phosphorylation of 
threonine 37 activates Src by disrupting the interaction 
between the SH2 domain and regulatory phosphotyrosine 
530 [33]. Phosphorylation of serine 43 and serine 51 by 
Wnt3A have opposite effects on Src activation [34].

Non-canonical regulatory mechanisms. The role 
of the SH4 domain

The initial residues of Src family kinases form the 
SH4 domain, which mediates anchoring to membranes 
through myristoylation (attachment of the 14-carbon 
myristic acid to the N-terminus) and, in most members of 
the family, palmitoylation (attachment of the 16-carbon 
palmitic acid to the side chain of cysteine) [35]. Src is 
not palmitoylated, but its SH4 domain contains a cluster 
of basic residues that contribute to binding to negatively 
charged lipid membranes [36]. Membrane attachment is 
required for the transforming activity of the viral form 
of Src or the activation of Src by a membrane-bound 
phosphatase [37, 38].

In addition to the relatively well understood function 
of the SH4 domain in membrane attachment, the SH4 
domain participates in other interactions that are likely to 
function as additional regulatory elements.

The SH4 and SH3 domains interact in the context 
of the fuzzy complex. NMR paramagnetic relaxation 
enhancement experiments that reveal the approximation 
of distant parts of a disordered region demonstrate that 
the Unique domain, in the absence of the SH3 domain, 
is preorganized to form the fuzzy complex but the SH4 
domain is not. However, in the presence of the SH3 
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domain, the N-terminal SH4 region becomes an integral 
part of the fuzzy complex [22]. A co-evolution analysis 
using GREMLIN confirmed a functional interaction 
between the SH4 and SH3 domain [22, 39]. Furthermore, 
NMR confirmed that the SH3 domain contains a site 
to which the myristoyl group can bind when it is not 
inserted in a lipid membrane [40]. As a result, the 
strength of the interaction of Src with membranes can be 
modulated through the interaction of the SH4 and SH3 
domains. Interestingly, in myristoylated Src, the Unique 
Lipid Binding Region does not contribute to membrane 
binding but stabilizes the intramolecular interaction of 
the myristoyl group with the SH3 domain and, therefore, 
competes with, rather than enhances, membrane binding.

A recent study has revealed a previously 
undiscovered interaction of the SH4 domain and the 
catalytic domain of Src that reduces Src activity and 
membrane anchoring. However, these effects could be 
reversed by abrogating the interaction either by deleting the 
SH4 domain or by mutations in the catalytic domain [41].

The possible interaction of the myristoyl group 
with the catalytic domain of Src has been suggested based 
on sequence similarity with the known myristoyl binding 
site in Abl [42, 43]. NMR studies confirm the interaction 

of a myristoyl group with an open conformation of Src 
[44]. This idea has been experimentally tested by the 
groups of Resh [45] and Moasser [46] through mutations 
affecting the Abl-like region of Src. The former group 
concluded that although a myristoyl binding site could 
be introduced by mutation, there was no evidence of an 
active myristoyl binding site in Src. On the contrary, 
Moasser suggests that the interaction of the myristoyl 
group of one Src molecule with the catalytic domain of 
a second molecule may be responsible for the observed 
Src dimerization detected by co-immunoprecipitation of 
tagged Src variants [46].

Interestingly, the interaction of the myristoylated 
SH4 domain with the globular region of Src has been 
independently reported by several groups, although the 
regions involved are quite distant in the X-ray structure of 
autoinhibited Src (Figure 2). The experimental evidence 
for the three proposals is strong and suggests a complex 
regulatory system in which multiple interaction sites either 
compete or cooperate modulating the conformational 
space of the active Src molecule in which flexible linkers 
connect the individual domains. The disordered Unique 
domain could enable the myristoylated SH4 domain to 
reach each of the individual sites.

Figure 2: Proposed binding sites for the myristoylated N-terminal SH4 domain on the globular domains of Src based on 
experimental evidence provided by Ahler et al. [41] (red); Spassov et al. [46] (green); and Le Roux et al. [22, 40] (blue).
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Non-canonical regulatory mechanisms. Src 
dimerization

Although it is known that c-Src activation involves 
trans-phosphorylation by a second c-Src molecule [47], 
membrane anchored c-Src has been generally assumed 
to remain monomeric. Nonetheless, Src dimers have 
been recently described by us and others [46, 48–50]. 
Moasser et al. suggest a model in which dimerization 
involves the interaction of the myristoyl group of one Src 
molecule with the SH1 domain of a second molecule that 
is bound to the inner side of the cytoplasmic membrane 
[46]. In the model systems studied by us, dimerization 
occurs in the absence of the SH1 domain but depends on 
membrane anchoring. It can be detected using surface 
plasmon resonance [49] or single molecule fluorescence 
[48] as persistent binding in model systems in which other 
effects, such as binding to lipid-rafts, can be ruled out. 
Surprisingly, Src dimerization on the membrane surface 
requires the cluster of lysine residues in the SH4 domain, 
in spite of the strong electrostatic repulsion [51].

Non-canonical regulatory mechanisms. 
Phosphotransferase-independent Src functions

Src is a multivalent molecule that can act as a 
hub for multiple interactions, which may imply or not 
subsequent phosphorylation by the catalytic domain. 
Numerous examples of kinases have evolved functions 
beyond catalysis [52]. An extreme case are pseudokinases 
that have lost entirely their catalytic activity but are 
important actors in signaling pathways [53, 54].

Integrin signaling involves transient changes in Src 
kinase activity and phosphorylation of focal adhesion 
kinase (FAK). Defects in fibroblast spreading associated 
with deficient activation of Src by integrins could be 
complemented by either wild type or kinase defective 
Src, indicating that this phenotype does not require Src 
catalytic activity [55]. Similarly, fibronectin-stimulated 
signaling from a FAK-Src complex does not depend on 
the kinase activity of Src [56]. Osteopetrosis, resulting 
from defective osteoclasts in Src −/− mice can be partially 
rescued by the expression of kinase-inactive Src [57]. A 
recent example combining catalytic and non-catalytic 
roles of Src is the paradoxical activation of Src as a 
drug resistance mechanism, which implied the increased 
capacity of drug inactivated Src to bind to FAK, resulting 
drug-inactivated in enhanced activity of Src when the 
inhibitor concentration was reduced [58].

The role of Src, and other Src family kinases as 
interaction hubs is not restricted to integrin signaling. 
Other examples include Jak2 signaling induced by 
prolactin [59] and, even more surprising, the participation 
of Src in the formation of a complex between viral 
proteins NSP5A and NSP5B required for the replication 
of the hepatitis C virus [60].

The SH3 and SH2 domains have the capacity to 
mediate protein-protein interactions by interaction with 
proline-rich and phosphotyrosine residues, respectively, 
and their contribution to Src interaction hubs is not 
surprising. However, the Unique domain can also mediate 
protein-protein interactions. The most well-studied 
example is the anchoring of Src to synaptic NMDA 
receptors through the NADH dehydrogenase subunit 2 
(ND2) that interacts directly with the Unique domain of Src 
[61]. This interaction can be targeted with cell-penetrating 
peptides based on the sequence of the Src Unique domain 
to treat chronic pain and hypersensitivity [62].

Environmental sensitive signaling. Opposing 
roles of RA in the Src-YAP-IL6 pathways

The capacity of intrinsically disordered regions of 
proteins to exist as an ensemble of rapidly interconverting 
forms offers a potent regulatory mechanism. The cellular 
environment can modulate the population of these 
interconverting forms by establishing weak interactions 
with other cellular components, or by reversible post-
translational modifications (e.g., phosphorylation, 
acetylation, glycosylation). This would give a possibility 
to fine-tune the activity of proteins depending on the cell 
type and the cell environment (Figure 3).

The co-activator of transcription TIF2 was recently 
revealed to interact with retinoic acid receptors (RAR and 
RXR) through an intrinsically disordered region [63].

Retinoic acid (RA) is a molecule derived from 
the environmental factor vitamin A. Although RA has 
been effectively used in treating acute promyelocytic 
leukemia, it is already known that it can produce opposite 
effects in closely related subtypes of cancer cell lines. 
The effect of RA on triple-negative breast cancer cells 
derived from African American women (MDA-MB-468 
cells) was tumor suppressive, while the effect on triple-
negative breast cancer cells derived from European 
American women (MDA-MB-231 cells) was tumor-
promoting, both in vitro and in vivo [64]. In a recent 
study we demonstrated that RA activated the pro-invasive 
and stemness-promoting Src-YAP-Interleukine-6 axis in 
MDA-MB-231 cells while it inhibited this pathway in 
MDA-MB-468 cells [65, 66].

Environmental sensitive signaling. Src and 
stemness

The Src-YAP-IL6 axis controls invasion, metastasis, 
resistance to therapy, and stemness of MDA-MB-231 
breast cancer cells [67]. This pathway is also overactivated 
in colon cancer [68, 69]. IL-6 is the first universal 
transcriptional target of YAP involved in promoting 
stemness conserved from flies to humans [67, 70]. 
Overexpression of IL-6 induces cancer cell proliferation, 
angiogenesis, and metastasis through stimulating STAT3, 
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MAPK, and Akt signaling pathways. In addition, IL-6 
regulates cancer stem cells, mesenchymal stem cell 
formation, and epithelial to mesenchymal transition in 
cancer and contributes to chemoresistance [71].

Other signaling pathways activated by Src include 
the Ras-Raf-MAPK-Erk2 and the PI3K-Akt-mTOR 
pathways, which are critical to transformation of chicken 
embryo fibroblasts [72]. These two pathways converge 
at several different sites within the cellular signaling 
network. For example, both pathways are involved in 
controlling the expression of c-Myc: Raf controls c-Myc 
expression at the transcriptional level [73]; mTOR 
controls c-Myc expression at the translational level [74]. 
Additionally, the expression of c-Myc is related to cancer 
stemness and drug resistance [75].

Environmental sensitive signaling. Src and Yes in 
cancer resistance 

Multiple signaling pathways activated through the 
activation of Src are related with the acquisition of drug 
resistance in cancer treatment [67, 71, 75, 76]. In relation 
to cancer resistance, Src is the most studied member of 
the Src family kinases (SFK), but increasing attention is 
being paid to Yes. YES1 is the only member of the SFK to 
show gene amplification in primary tumors of untreated 
patients [77] and as part of the development of resistance 
to chemotherapy and immunotherapy [78–81]. In addition, 
enhanced therapeutic anti-cancer response has been 
achieved by combining immune checkpoint and tyrosine 
kinase inhibition [82].

Concluding remarks. Src as an oncotarget

Src is rarely mutated in human tumors, and 
overexpression of Src by itself in otherwise healthy cells 
is only weakly oncogenic [83]. Therefore, Src is probably 
not the lone dominant transforming factor in most cancers, 
but significantly contributes to cancer progression, 
resistance, and metastasis, and Src is overexpressed or 
hyperactivated in many human neoplasms, including 
colorectal, breast, pancreas, prostate, and lung as well 
as different types of sarcomas, glioma and melanoma. 
Thus, Src is a recognized oncotarget. Many small-
molecule drugs have been developed and tested [76, 
84–86]. Most drugs target the kinase or SH2 and SH3 
canonical regulatory domains. While in vitro data are 
promising, the results from clinical trials have often 
fallen short of expectations. Possible reasons are lack of 
selectivity, resulting in toxicity, or the inhibition of the 
many physiological functions of Src in healthy cells. Since 
Src oncological effects results from deregulation in the 
specific context of cancer cells, a promising approach 
is to target the disordered region that includes unique 
sequences for each of the SFK and has no homologous 
regions in other kinases. Also, if our hypothesis that the 
fuzzy complex in the SNRE is an important player in 
Src’s sensing of its environment, targeting this region 
could achieve a cell-type selectivity that could ideally 
discriminate between healthy and cancer cells. Targeting 
of proteins’ intrinsically disordered regions was identified 
as one of the 10 top emerging technologies in 2019 by the 
World Economic Forum and it has been proven in other 

Figure 3: Translating information from the environment to generate cell-type selective signaling may involve reading 
of environmental signals by the disordered region and, eventually, modulating the activity and specificity of the kinase.
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disordered cancer targets [87]. Our group has designed a 
screening system to search chemical libraries for binders 
of the Src SNRE [88] and we are currently following up 
a promising lead.
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