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This paper presents the formulation, implementation, and validation of a simplified qualitative model to determine the crack path
of solids considering static loads, infinitesimal strain, and plane stress condition.Thismodel is based on finite element method with
a special meshing technique, where nonlinear link elements are included between the faces of the linear triangular elements. The
stiffness loss of some link elements represents the crack opening. Three experimental tests of bending beams are simulated, where
the cracking pattern calculatedwith the proposed numericalmodel is similar to experimental result.The advantages of the proposed
model compared to discrete crack approaches with interface elements can be the implementation simplicity, the numerical stability,
and the very low computational cost. The simulation with greater values of the initial stiffness of the link elements does not affect
the discontinuity path and the stability of the numerical solution. The exploded mesh procedure presented in this model avoids a
complex nonlinear analysis and regenerative or adaptive meshes.

1. Introduction

Fracture mechanics studies the cracking process of a solid
subjected to progressive external load. Particularly, computa-
tional fracture mechanics allows representing the formation
and propagation of cracks in solids of general geometry by
means of numerical models [1]. The results obtained with
these models enable studying new materials and reducing
cost of experimental tests [2].

The fracture process in a solid can be represented accord-
ing to the description of displacement and strain field, the
material constitutive model, and the numerical approxi-
mation technique in the finite element method. Likewise,
the models could be divided by the following three types:
the models with propagating cohesive discontinuities, the
softening continuum models with partial regularization, and
the regularized softening continua models [3].

Models with propagating cohesive discontinuities assume
that the fracture process zone preserves a linear elastic
behavior during its formation. Cohesive forces are defined
between the faces of the discontinuity.These forces disappear
when the gap between faces reaches a certain distance.

Consequently, the kinematics singularity vanishes and
the crack opening increases in a discrete form [4]. Some au-
thors indicate that each change of the discontinuity path
needs remeshing process [5–8]. Other authors propose to
enhance the trial function of the finite element in order to
represent a jump of the displacement field [9–11].The concept
of partition of unity enhances the shape function of standard
finite elements and ensures a uniqueness result [3]. Particu-
larly, extended finite element method (X-FEM) is based on
previous concept, choosing a function that represents the
discontinuity of the displacement field on the crack faces [12–
14].
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Softening continuum models with partial regularization
represent the fracture process zone by means of the strain
localization on a finite band. Although the displacement field
is defined as a continua form, there are weak discontinuities
in the boundaries of the band [3]. The softening in fracture
zone is independent of the size finite element and is also
associated with the fracture energy per area unit [15]. The
band of fracture zone is embedded into finite element in order
to ensure objectivity with respect to the orientation of the
mesh [16].

Regularized softening continua models preserve conti-
nuity of the displacement and strain fields. The fracture
process zone is represented by a material band, in which the
softening strain increases from the band boundary until its
center [3]. These models have generally high computational
cost; however, they have some advantage with respect to the
models of partial regulation. The influence of size element is
substantially reduced with fine meshes. These models show
good results with adaptive meshing technique [17].

Other classification establishes two types of numerical
models in order to represent cracking in brittle materials: the
smeared crack approach and the discrete crack approach [18].

The smeared crack approach considers that an infinite
amount of parallel cracks, each with very small opening,
are assigned to the finite elements. The constitutive material
model in the element is modified, such that the tangent
stiffness and the stress in normal direction of the crack are
reduced while the strain increases [19].

The discrete crack approach indicates that the fracture
process zone is concentrated at a surface characterized by a
relationship between the traction versus displacement jump,
which describes the cohesion loss of thematerial between the
crack faces after fulfilling the failure criteria. This approach
has been developed on different models. Originally, cohesive
forces associated with the fracture energy between the faces
of a crack are appended. The initial models as the cohesive
crack model prescribe the location of crack [20, 21]. Subse-
quently, the fictitious crackmodel predicts the formation and
propagation of the crack in anywhere of the solid [22, 23].
The location of the crack with respect to finite element mesh
establishes two different numerical techniques. The first one
states that the crack is traced on the finite element sides and
the cohesive forces are obtained bymeans of nonlinearmixed
boundary conditions [18] or through interface elements with
vanished or zero thickness that connect the nodes to both
sides of the discontinuity [24–30]. The second technique
states that the crack crosses the finite element [31, 32].

Particularly in two-dimensional mechanical problems
using discrete crack models with interface elements, some
authors define two triangular finite elements with high aspect
ratio in the interface [29, 30], which depend on a tension
damage constitutive relationship and the same kinematics
as the continuum strong discontinuity approach tangent
stiffness factor. Other authors state zero-thickness interface
elements that couple pairs of duplicate nodes, whose behavior
is defined by a traction-separation law [28]. In other works
[25–27], the fracture process in the interface surface is based
on failure criteria of the three-parameter hyperbolic cracking
surface [24], which relates the normal and tangential stress

components to the corresponding relative displacements.
These last approaches request additional procedures in order
to preserve the numerical stability in the nonlinear analysis.

In composite materials, the analysis of crack nucleation
and growth must be addressed taking into consideration the
nonlinear behavior in its microstructure. Different phenom-
ena such as void growth, microcracking, interfacial debond-
ing, and other nonhomogeneities are closely related to failure
mechanisms that produce macroscale failure; as a conse-
quence, macroscopic fracture models may turn out to be
inappropriate to estimate crack trajectories and the structural
response of those kinds of specimens [33]. Different authors
have been developed approaches to tackle these problems
via multiscale methods, which, by means a combination of
microscale phenomena and mathematical approaches, allow
describing the behavior ofmultiphasematerials. In this sense,
different works must be pointed [34–37].

This paper presents the formulation, implementation, and
validation of a qualitative numerical model, which describes
qualitatively the cracking pattern in a brittle homogeneous
material, considering static loads, plane stress condition, and
infinitesimal strain. This model is based on both the discrete
crack approach and the finite element method, where the
overlapping faces of the triangular elements are doubled
and connected to zero-length link elements. Some sides of
triangular elements are part of the discontinuity path, where
the nonlinear behavior is represented by the link elements.
The tangent stiffness of these elements tends to infinity
during the linear elastic behavior of the material and is equal
to zero when the failure criteria are fulfilled. This model
avoids the remeshing process, provides the implementation
into finite element code, and maintains a low computational
cost. However, the structural response cannot be obtained
because the cohesive law in the cracking zone was not
considered. The advantage of the proposed model compared
to discrete crack approaches with interface elements can be
the implementation simplicity, the numerical stability, and
the very low computational cost.

2. Formulation of the Numerical Model

The proposed model is based on continuum mechanics
applied to solid with discontinuities. The latter are produced
by the fracture process of the brittle material. Particularly,
plane stress condition, infinitesimal strain, and static load are
considered.

2.1. Government Equations in the Continuum. A solid is sub-
jected to body forces vector b at the domain Ω and surface
forces t∗ at the contour Γ𝑡 with normal vector n, as shown in
Figure 1(a).Theprescribed displacements are indicated by the
vector u∗ at the contour Γ𝑢. The state stress in each material
point x is expressed by the tensor 𝜎. Equations (1a) to (1c)
present the equilibrium and boundary conditions in the solid:

∇ ⋅ 𝜎 + b = 0 ∀x ∈ Ω (1a)

𝜎 ⋅ n = t∗ ∀x ∈ Γ𝑡 (1b)

u = u∗ ∀x ∈ Γ𝑢 (1c)



Mathematical Problems in Engineering 3

t∗

Ω

Γu

n

b

u = u∗

Γd

Γt

u(x, t)

(a)

nd

−nd

td
−td

∀x ∈ Γd

(b)

Figure 1: Solid with discontinuity subjected to body and surface
forces: (a) general sketch and (b) detailed traction vector inside of
the discontinuity.

In Figure 1(b), a discontinuity surface Γ𝑑 with normal
vector n𝑑 preserves continuity of the traction vector t𝑑, of the
following form:

𝜎 ⋅ n𝑑 = t𝑑,
𝜎 ⋅ (−n𝑑) = −t𝑑

∀x ∈ Γ𝑑.
(2)

The weak form of the mechanical problem of a solid with
discontinuities is obtained bymeans of virtual work principle,
which establishes that the following [28, 38]:

𝛿𝑊int + 𝛿𝑊coh − 𝛿𝑊ext = 0. (3)

The external virtual work 𝛿𝑊ext is produced by the body and
surface forces b and t∗ and is expressed as follows:

𝛿𝑊ext = ∫
Ω
𝛿u ⋅ b 𝑑Ω + ∫

Γ𝑡

𝛿u ⋅ t∗ 𝑑Γ, (4)

where 𝛿u is the virtual displacement vector. The internal
virtual work 𝛿𝑊int is generated by stress tensor 𝜎 and the
virtual strain tensor 𝛿𝜖 = ∇𝑠u at Ω ⊐ Γ𝑑, of the following
form:

𝛿𝑊int = ∫
Ω⊐Γ𝑑

𝛿𝜖 : 𝜎 𝑑Ω. (5)

Linear elastic behavior at domain Ω outside of discontinuity
contour Γ𝑑, that is, Ω ⊐ Γ𝑑, is assumed. Consequently the
stress tensor is equal to 𝜎 = D : 𝜖, whereD is the linear elastic
constitutive tensor of the material. The cohesive virtual work𝛿𝑊coh is produced by traction vector t𝑑 between the faces of
the discontinuity Γ𝑑 and the virtual displacement jump vector⟦𝛿u⟧; thus

𝛿𝑊coh = ∫
Γ𝑑

⟦𝛿u⟧ ⋅ t𝑑 𝑑Γ. (6)

The cohesive loss between the faces of the discontinuity
exhibits a nonlinear behavior, which is expressed by the
relationship between the traction rate vector ̇t𝑑 and the rate
vector of the displacement jump ⟦u̇⟧; thus

̇t𝑑 = T ⋅ ⟦u̇⟧ , (7)

where T is the tangent constitutive tensor of the traction-
displacement jump model at the discontinuity.

2.2. Failure Criteria and Fracture Process. The proposed
model uses Rankine’s failure criteria restricted by tensile
stress states.These criteria establish that the failure ofmaterial
takes place when the positive maximum principal stress 𝜎𝑝
reaches the tensile strength of the material 𝜎𝑢. In plane stress
condition, this stress is defined as follows:

𝜎𝑝 = max (𝜎1, 𝜎2, 0) . (8)

The fracture process in mode I appears with the failure
of material, where the crack is normal to the direction of the
positive maximum principal stress n𝑝 = 𝑛𝑝𝑥i + 𝑛𝑝𝑦j, where𝑛𝑝𝑥 = cos 𝜃𝑝, 𝑛𝑝𝑦 = sin 𝜃𝑝, and 𝜃𝑝 is the angle between 𝑥-
global axis and the direction of positive maximum principal
stress.

The cohesion between crack faces is lost inside the crack-
ing zone, while elastic unloading is shown at neighborhood
of the cracking zone.

3. Implementation of the Numerical Model in
Finite Element Method

The mechanical problem raised in the previous section
is implemented in finite element method. The nonlinear
analysis procedure, the meshing technique with potential
discontinuities, the description of used type elements, and the
evaluation of its tangent stiffness are presented as follows.

3.1. Nonlinear Analysis by Means of Finite Element Method.
A solid in plane stress condition can be represented with a
mesh of 𝑛𝑒 linear triangular finite elements connected by 𝑛𝑙
link elements, where the discontinuity path may appear on
the contours of the triangular elements. Each overlapping
side of two triangular elements is separated, and its nodes are
duplicated and connected with two link elements, as shown
in Figures 2(a) and 2(b).

Each link element connects two overlapping nodes; there-
fore, its length is null and its longitudinal axis is perpendic-
ular to the side of associated triangular element, as shown in
the virtual gap of Figure 2(c).
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Figure 2: Connecting an overlapping side of two triangular elements by means of two link elements: (a) sketch of two triangular elements
in real scale, (b) sketch of two triangular elements and two link elements out of scale, and (c) detailed link element and its orientation with
regard to neighboring triangular elements in a virtual gap.

The discontinuity path on a contour Γ𝑑 is not known a
priori. Consequently, the contours of triangular elements Γℎ
are assumed as likely discontinuity paths. The linear elastic
behavior on the domain outside of possible discontinuity
paths Ω ⊐ Γℎ is represented by linear triangular elements,
while the nonlinear behavior on possible discontinuity pathsΓℎ is represented by link elements. The latter shows dis-
placement compatibility when there is no discontinuity and
cohesive loss when there is a discontinuity.

In each triangular finite element 𝑒, the transpose virtual
displacement vector 𝛿u𝑇𝑒 = 𝛿a𝑇𝑒N𝑇𝑒 , where N𝑒 is the shape
functions matrix and 𝛿a𝑒 is the nodal virtual displacement
vector of the element. Likewise, the transpose virtual strain
vector 𝛿𝜖𝑇𝑒 = 𝛿a𝑇𝑒 B𝑇𝑒 , where B𝑒 is the gradient matrix of the
element 𝑒 [39].

The external virtual work of the solid, expressed in (4),
can be defined in a mesh of 𝑛𝑒 triangular finite elements and
using matrix notation; thus

𝛿𝑊ext = 𝑛𝑒∑
𝑒=1

(∫
Ω𝑒

𝛿u𝑇𝑒 b 𝑑Ω𝑒 + ∫
Γ𝑒
𝑡

𝛿u𝑇𝑒 t∗ 𝑑Γ𝑒)

= 𝑛𝑒∑
𝑒=1

𝛿a𝑇𝑒 fext𝑒 = 𝛿a𝑇fext,
(9)

where the nodal virtual displacement of the mesh corre-
sponds to 𝛿a and the external force vector of mesh fext
is obtained from assembling of vector fext𝑒 of 𝑛𝑒 triangular
elements, that is, fext = A𝑛𝑒𝑒=1f

ext
𝑒 . The external force vector

of a triangular finite element is defined as follows:

fext𝑒 = ∫
Ω𝑒

N𝑇𝑒 b 𝑑Ω𝑒 + ∫
Γ𝑒
𝑡

N𝑇𝑒 t
∗ 𝑑Γ𝑒𝑡 . (10)

The internal virtual work of the solid, expressed in (5), can be
defined in a mesh of 𝑛𝑒 triangular finite elements; thus

𝛿𝑊int = 𝑛𝑒∑
𝑒=1

∫
Ω𝑒⊐Γ𝑑

𝛿𝜖𝑇𝑒 𝜎𝑒 𝑑Ω𝑒 =
𝑛𝑒∑
𝑒=1

𝛿a𝑇𝑒 f int𝑒 = 𝛿a𝑇f int, (11)

where the internal force vector of the mesh f int is obtained
from assembling of the vector f int𝑒 of the 𝑛𝑒 triangular
elements, that is, f int = A𝑛𝑒𝑒=1f

int
𝑒 . The internal force vector of a

triangular element is defined of the following form:

f int𝑒 = ∫
Ω𝑒

B𝑇𝑒 𝜎𝑒 𝑑Ω𝑒. (12)

The cohesive virtual work in the discontinuity of the solid,
expressed in (6), can be defined in a mesh of 𝑛𝑙 link elements;
thus

𝛿𝑊coh = 𝑛𝑙∑
𝑙=1

𝛿a𝑇𝑙 fcoh𝑙 = 𝛿a𝑇fcoh, (13)

where the cohesive force vector of the mesh fcoh is obtained
from assembling of the vector fcoh𝑙 of the 𝑛𝑙 link elements, that
is, fcoh = A𝑛𝑙𝑙=1f

coh
𝑙 .

Equations (9), (11), and (13) are substituted into (3),
and the transpose nodal virtual displacement vector 𝛿a𝑇 is
factorized and canceled. The obtained equilibrium condition
establishes that f int + fcoh − fext = 0. In the context
of the nonlinear analysis with finite element method, the
equilibrium condition is fulfilled when the residual force
vector tends to zero, that is,Ψ→ 0. The residual force vector
Ψ is defined as follows:

Ψ = f int + fcoh − fext. (14)

According to Newton-Raphson method, the residual
force vector Ψ(a𝑖 + Δa𝑖) evaluated on nodal displacement
a𝑖 plus the trial incremental displacement vector Δa𝑖 in the
iteration 𝑖 is equal to

Ψ (a𝑖 + Δa𝑖) = Ψ (a𝑖) + 𝜕Ψ𝜕a (a𝑖) Δa𝑖. (15)

The derivate of the residual force vector, presented in (14),
with respect to nodal displacement is

𝜕Ψ𝜕a = 𝜕f int𝜕a + 𝜕fcoh𝜕a − 𝜕fext𝜕a = Kint + Kcoh. (16)
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Figure 3: Finite element meshes: (a) conventional mesh and (b) exploded mesh out of scale.

The external force vector does not change with respect to
nodal displacement in the iterative process; then 𝜕afext = 0.
However, the derivative of the internal and cohesive force
vectors with respect to nodal displacement are equal to the
tangent stiffness matrices Kint and Kcoh, respectively.

Nonlinear numerical solution method searches the trial
incremental nodal displacement Δa𝑖 for which the residual
force vectorΨ(a𝑖 + Δa𝑖) is equal to zero. In each iteration 𝑖 of
this procedure, an equations system is solved; thus

Δa𝑖 = − (Kint (a𝑖) + Kcoh (a𝑖))−1Ψ (a𝑖) . (17)

The tangent stiffness matrices Kint and Kcoh are obtained
from assembling of the tangent stiffness matrices Kint

𝑒 and
Kcoh
𝑙 of each finite element, respectively; thus

𝜕f int𝜕a = Kint = A
𝑛𝑒
𝑒=1K

int
𝑒

(18a)

𝜕fcoh𝜕a = Kcoh = A
𝑛𝑙
𝑙=1K

coh
𝑙 , (18b)

where 𝑒 identifies the two-dimensional element from 1 to 𝑛𝑒
and 𝑙 indicates the link element from 1 to n𝑙.

A linear elastic material is assumed in the domain of
the triangular elements; therefore 𝜎𝑒 = D𝑒𝜖𝑒, where the
constitutive matrix D𝑒 is constant with respect to the strain
state and 𝜖𝑒 = B𝑒a𝑒. The internal force vector of a triangular
finite element is f int𝑒 = Kint

𝑒 a𝑒, where the nodal displacement
vector is a𝑒 and the stiffness matrix Kint

𝑒 is defined of the
following form [39]:

Kint
𝑒 = ∫

Ω𝑒

B𝑇𝑒D𝑒B𝑒 𝑑Ω𝑒. (19)

Thismatrix depends on thickness 𝑡of the element andYoung’s
modulus 𝐸 and Poisson’s relation ] of material.

In contrast, each link element 𝑙 exhibits nonlinear behav-
ior, in which the cohesive force vector rate ̇fcoh corresponds
to

̇fcoh𝑙 = Kcoh
𝑙 ȧ𝑙, (20)

where ȧ𝑙 is the vector rate of the displacement on the duplicate
nodes of link element 𝑙. Tangent stiffness matrix Kcoh

𝑙 of this
element is defined as follows:

Kcoh
𝑙 = 𝑘coh𝑙

[[[[[[
[

𝑛2𝑙𝑥 𝑛𝑙𝑥𝑛𝑙𝑦 −𝑛2𝑙𝑥 −𝑛𝑙𝑥𝑛𝑙𝑦
𝑛𝑙𝑥𝑛𝑙𝑦 𝑛2𝑙𝑦 −𝑛𝑙𝑥𝑛𝑙𝑦 −𝑛2𝑙𝑦
−𝑛2𝑙𝑥 −𝑛𝑙𝑥𝑛𝑙𝑦 𝑛2𝑙𝑥 𝑛𝑙𝑥𝑛𝑙𝑦

−𝑛𝑙𝑥𝑛𝑙𝑦 −𝑛2𝑙𝑦 𝑛𝑙𝑥𝑛𝑙𝑦 𝑛2𝑙𝑦

]]]]]]
]
. (21)

The longitudinal axis of link element is normal to the side
of the neighboring triangular elements and it is defined by
directional vector n𝑙 = 𝑛𝑙𝑥i+𝑛𝑙𝑦j, where 𝑛𝑙𝑥 = cos 𝜃𝑙 and 𝑛𝑙𝑦 =
sin 𝜃𝑙. The angle between the longitudinal axis of the link
element and 𝑥-global axis is called 𝜃𝑙, as shown in Figure 2(c).

This numerical model assumes that the crack path does
not substantially depend on the cohesive law of the brittle
material. Likewise, the single goal of this work is to predict the
crack path, without representing the structural response of
the solid. Consequently, this model proposes a simplification
of the cohesive law, in which the tangent stiffness factor 𝑘coh𝑙
is equal to zero, when the cohesion is totally lost, and tends to
infinity when the displacement compatibility is preserved.

3.2. Generation of the Exploded Finite Element Mesh. First,
a conventional mesh of linear triangular elements and the
boundary conditions are generated. Next, a new mesh of
linear triangular and link elements is produced with the
information of the conventional mesh. The new mesh is
called exploded mesh and is made only once during the
simulation. Figure 3(a) shows conventionalmeshwhere some
sides of linear triangular elements are overlapped. A virtual
gap separates the overlapping sides of two triangular elements
and its nodes are duplicated as shown in Figure 3(b). Each
node of the conventional mesh is replaced with a set of
overlapping nodes in the exploded mesh; for example, node
6 of the conventional mesh is replaced with nodes 11, 12, 13,
14, and 15. Each pair of duplicated nodes is connected with a
link element; for example, link element 1 connects to nodes 11
and 12.

The triangular finite elements preserve the linear elastic
behavior during thewhole loading process and depend on the
mechanical elastic properties of the material. Particularly, in
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Figure 4: Out-scale sketch of the exploded mesh around node 6 of the conventional mesh: (a) exploded mesh in node 6 of the conventional
mesh, (b) directional vector of the link elements near node 6 and comparative direction, and (c) angle between the comparative direction and
the directional vector of a link element.

the first loading step, the tendency to infinity of the tangent
stiffness factor of all link elements is kept, which ensures the
displacement compatibility between nodes.

In the implemented numerical procedure, the numbering
of triangular finite elements of the exploded and conventional
meshes are the same. However, the numbering of each set of
overlapping nodes of the explodedmesh is associatedwith the
node number at the same location of the conventional mesh.

3.3. Evaluation of the Tangent Stiffness of Link Elements. The
nodal stress components 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑥𝑦 on each set of
overlapping nodes are obtained from the average among the
stress components of surrounding linear triangular elements.
The principal stresses 𝜎1 and 𝜎2 and their directionsn1 and n2
are computed as indicated in some references for plane stress
condition [38, 39]. The positive maximum principal stress 𝜎𝑝
and its direction n𝑝 are selected according to (8). The angle
between the 𝑥-global axis and the directional vector of the
positive maximum principal stress n𝑝 is called 𝜃𝑝.

If the positive maximum principal stress 𝜎𝑝 reaches the
tensile strength of the material 𝜎𝑢, then the tangent stiffness
in one of the link elements𝑚, . . . , 𝑛𝑚 associated with this set
overlapping nodes ismodified. If the orientation n𝑙 of the link
element has the least difference with respect to comparative
direction n𝑐, then the tangent stiffness factor 𝑘coh𝑙 of (21) is
equal to zero. Otherwise, this factor preserves the tendency
to infinity, that is,

𝑘coh𝑙
= {{{

0 if 𝜎𝑝 = 𝜎𝑢, 𝜃err𝑙 = min (𝜃err𝑚 , . . . , 𝜃err𝑛𝑚)
󳨀→ ∞ otherwise.

(22)

Figure 4(a) shows link elements 1 to 5 associated with the
overlapping nodes 11 to 15, where the positive maximum
principal stress is equal to the tensile strength of the material.

Here, the tangent stiffness factor of link element 5 is zero,
because its orientation has the least difference with respect
to n𝑐, as shown Figure 4(b).

Since there is no perfect alignment between the com-
parative direction n𝑐 and the link orientation n∙ selected
because it has the least difference with respect to n𝑐, there is
an implicit error 𝜃err∙ in computing of crack direction. This
error is defined in

𝜃err∙ = 𝜃𝑐 − 𝜃∙, (23)

where the angle between 𝑥-global axis and the directional
vector of a link element n∙ is called 𝜃∙ and the angle between𝑥-global axis and the vector of the comparative direction n𝑐
is called 𝜃𝑐, as shown in Figure 4(c).

The angle of the comparative direction 𝜃𝑐 is equal to
the angle of the direction principal 𝜃𝑝 in the first set of
overlapping nodes where 𝜎𝑝 = 𝜎𝑢. In the following set of
overlapping nodes, the comparative direction is defined as
indicated in Section 3.4.

The side of triangular element normal to vector n𝑙 of
link element with zero stiffness is part of the discontinuity
path. Figure 4(a) shows link elements 1 to 5 associated with
the overlapping nodes 11 to 15, where the positive maximum
principal stress is equal to the tensile strength of the material.
Here, the tangent stiffness factor of link element 5 is zero,
because its orientation has the least difference with respect
to n𝑐, as shown in Figure 4(b).

3.4. Correction of the Discontinuity Path. The crack path is
considered normal to direction of positive maximum prin-
cipal stress at each material point of solid. However, the
discontinuity path is traced on the sides of triangular finite
elements in the numerical model. In order to reduce the
difference caused by the mesh alignment, the comparative
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Figure 5: Detailed discontinuity path in a mesh of triangular finite elements: (a) with correction and (b) without correction.

direction 𝜃(𝑟)𝑐 in the set of overlapping nodes 𝑟 with 𝜎(𝑟)𝑝 = 𝜎𝑢
is defined as follows:

𝜃(𝑟)𝑐 = 𝜃(𝑟)𝑝 + 𝜃err(𝑟−1)𝑙 , (24)

where 𝜃err(𝑟−1)
𝑙

is the error angle computed in (23), which
was obtained at the previous set of overlapping nodes 𝑟 − 1
with 𝜎(𝑟−1)𝑝 = 𝜎𝑢. As was mentioned above, the purpose of
this correction is to avoid the implicit error resulting of
misalignment of the comparative directionsn𝑐with respect to
mesh topography. Figure 5 shows an example of discontinuity
pathwith andwithout correction in amesh of triangular finite
element. The dash line represents the expected crack path of
the solid. The discontinuity path is nearer to the crack path
when the correction is applied.

4. Application Examples

The three experimental tests developed by other authors are
simulated by means of proposed numerical model. These
tests correspond to notched beams with and without holes,
subjected to transversal load in one or two points. The
deformed shape of the finite mesh in the last loading step
exhibits a path where the relative displacement between
nodes is greater. This path represents the discontinuity in the
solid, which is compared with the cracking pattern of the
experimental test.

4.1. Example 1: Three-Point Beam with Nonconcentric Notch.
A simply supported beam of polymethylmethacrylate
(PMMA) is subjected to load 𝑃 at the upper center part.
Figure 6 shows the geometry and load applied on the beam,
where the thickness is 𝑡 = 5mm, and the notch has 𝑎 of depth
and separated 𝑏 from the loading line on the bottom center
face of the beam. The mechanical features of the material are
as follows: Young’s modulus 𝐸 = 3100MPa, Poisson’s relation
] = 0.4, and tensile strength 𝜎𝑢 = 76MPa. Two cases with

P

a

b 1010

100100
80

Figure 6: Sketch of the three points beamwith nonconcentric notch.
The measurements are given in millimeters.

Table 1: Meshes of Case I of Example 1.
Number of elements Number of nodes

Mesh 1 1413 765
Mesh 2 4412 2310
Mesh 3 9432 4869

different values of 𝑎 and 𝑏 are studied. In Case I, 𝑎 = 10mm
and 𝑏 = 60mm are defined and three meshes with different
amount of triangular elements are simulated (Table 1).

Figure 7 shows the discontinuity path obtained with each
mesh and the cracking pattern from the experimental test
developed by Ingraffea and Grigoriu [40]. The discontinuity
path of mesh 1 is close to the experimental crack. However,
the numerical result shows a discontinuity path almost
straight because of low numbers of finite elements.

The simulation with mesh 2 captures the curvature of the
experimental crack, despite the approximation being least at
the beginning of the path. Likewise, the discontinuity path
obtained with mesh 3 is almost equal to the experimental
result, except for the zigzag line associated with the size of
the orientation of the finite elements sides.
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Figure 7: Comparison between the discontinuity path in three finite element meshes and the crack path of the experimental test in Case I of
Example 1.

Table 2: Finite element meshes of Example 2.
Case I Case II

Number of elements Number of nodes Number of elements Number of nodes
Mesh 1 2630 1398 2191 1172
Mesh 2 10520 5428 10284 5311
Mesh 3 23200 11846 16296 8360

In Case II, 𝑎 = 15mm and 𝑏 = 50mm are defined and a
mesh of 9636 triangular elements is simulated.The notorious
relative displacement between nodes is obtained by numer-
ical model, which is similar to the cracking pattern of the
experimental test [40], as shown in Figure 8(a).

4.2. Example 2:Three-Point BeamwithNotch andThreeHoles.
Example 2 has the same material and external geometry
of the previous example but includes three internal holes
which are located between the notch and the load, as shown
in Figure 9. The principal stress and strain are high in the
neighborhood of each hole. This produces a curvilinear
cracking pattern unique [42]. The depth 𝑎 and the distance𝑏 are defined in two cases. Each case is simulated with three
finite element meshes with different element size as indicated
in Table 2. This problem has been experimentally tested by
Ingraffea and Grigoriu [40] and numerically modeled by
others authors [42–46].

A depth 𝑎 = 10mm and the distance 𝑏 = 60mm are
defined in Case I. The discontinuity path of the proposed
numericalmodel is comparedwith the experimental cracking

pattern and with the discontinuity path computed by other
authors [43–47].These results are shown in Figure 10, consid-
ering three different meshes of the proposedmodel (Table 2).
The discontinuity path ofmeshes 1 and 2 has shown similarity
with respect to experimental cracking pattern, except at its
ends. The path obtained in the finest mesh or mesh 3 is very
similar to the experimental result, even close to the holes.

Other approaches as the element free Galerkin method
[47] or the edge-based smoothed finite element method [43]
exhibit good results. Mesh 3 of proposed model, numerical
approach of Nguyen-Xuan and collaborators, and the exper-
imental test present the same crack path, in spite of the saw-
tooth form of the proposed model.

Figure 11 shows the notorious relative displacement
between nodes of the deformed shape of the noted mesh
while the applied load is increased. This represents the evo-
lution of the discontinuity path. A depth 𝑎 = 15mm and the
distance 𝑏 = 50mm are defined in Case II. The comparison
between the discontinuity path of the proposed numerical
model with three meshes, the numerical model of other
authors, and the crack path of experimental test [40] is
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Figure 8: Numerical and experimental crack path in Case II
of Example 1: (a) comparison between the discontinuity path in
numerical model and the crack path of experimental test [40] and
(b) relative displacement between nodes of the deformed shape of
the numerical model.

shown in Figure 12. The obtained numerical result of mesh
1 indicates considerable difference, in which its end does
not reach the intermediate hole. Mesh 2 captures one of
two curvatures of the experimental crack. The finest mesh
presents the best approximation, in which the numerical
discontinuity path exhibits the double curvature and the end
point in the hole of the crack pattern. Furthermore, this figure
shows that the work of Nguyen-Xuan and others is slightly
most precise than the result of mesh 3 of the proposedmodel.
The path of the latter is equal to the model of Ventura and
collaborators.

4.3. Example 3: Beam with Notch and Two Loading Points. A
concrete beam is subjected to the loads 0.13𝑃 and𝑃, as shown
in Figure 13. The beam has a thickness of 𝑡 = 156mm and
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Figure 9: Sketch of the three-point beamwith notch and three holes.
The measurements are given in millimeters.

a notch of 82mm of depth located nearby the support. The
material has a Young modulus of 𝐸 = 24800MPa, Poisson’s
relation of ] = 0.18, and tensile strength of 𝜎𝑢 = 2.8MPa.The
geometry and the boundary conditions produce an important
zone of constant shear stress [48]. This test was developed by
Arrea and Ingraffea [41] andwas simulatedwith the proposed
model and a mesh of 16284 triangular finite elements.

The notorious relative displacement between nodes of
the deformed shape of the numerical model is shown in
Figure 14(b), whereas, in Figure 14(a), both show the numer-
ical discontinuity path and the experimental crack obtained
by Arrea and Ingraffea [41]. There is a qualitative similarity
between the two paths, apart from inward curve of the first
part of the path.

The works of Rots with smeared crack models [49]
show a good approximation of this test. Particularly, the
discontinuity path presents a better result near the notch with
respect to proposed model, but this path has curvature less
that the real crack.

4.4. Sensibility of the Discontinuity Path to the Initial Stiffness
of Link Elements. The initial stiffness factor of link element𝑘coh,0
𝑙

tends to infinity in order to ensure the displacement
compatibility between overlapping nodes. This tendency is
to be expressed by means of a bounded value. This model
establishes that 𝑘coh,0

𝑙
is much higher than the maximum

coefficient of the stiffness matrix of an equilateral triangular
element with linear elastic behavior 𝑘int𝑒(max) = 𝑡𝐸/(√3(1 −
]2)). A sensibility analysis of the three application examples
was developed. Particularly, some simulations with different
values of the initial stiffness factor of the link elements and
fine meshes were carried out. Table 3 indicates the maximum
number of iterations per loading step in column 𝑛𝑖 and
whether (Y) or not (N) the discontinuity path is obtained
in column 𝑑𝑝, for four values of 𝑘coh,0

𝑙
. The simulations with

initial stiffness factor between 1×103 and 1×105 times 𝑘int𝑒(max)
exhibit the same discontinuity path, keeping the numerical
stability of the solution. The numerical precision of the
computer is overcome only when the initial stiffness factor
of link element is 1 × 106 times 𝑘int𝑒(max), Examples 1 and 2.

Low values of initial stiffness of the link elements were not
assigned to the simulations because these do not represent the
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Figure 10: Comparison between the discontinuity path in numerical model and the crack path of experimental test in Case I of Example 2.
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Figure 11: Evolution of the discontinuity path in the numerical simulation of the finest mesh in Case I of Example 2.

Table 3: Results of the sensibility analysis of the discontinuity path to the initial stiffness of link elements.

𝑘coh,0𝑙 /𝑘int𝑒(max) = 1 × 103 1 × 104 1 × 105 1 × 106 Figure 𝑑𝑝𝑛𝑖 𝑑𝑝 𝑛𝑖 𝑑𝑝 𝑛𝑖 𝑑𝑝 𝑛𝑖 𝑑𝑝
Example 1, Case I 2 Y 2 Y 2 Y 0 N Figure 7(c)
Example 1, Case II 2 Y 2 Y 2 Y 0 N Figure 8(a)
Example 2, Case I 2 Y 2 Y 2 Y 0 N Figure 10(c)
Example 2, Case II 2 Y 2 Y 2 Y 0 N Figure 12(c)
Example 3 2 Y 2 Y 2 Y 2 Y Figure 14(a)
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Figure 12: Comparison between the discontinuity path in numerical model and the crack path of experimental test in Case II of Example 2.
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Figure 13: Sketch of the beam with notch and two loading points. The measures are given in millimeters.

displacement compatibility in the overlapping nodes before
the formation of the crack.

Convergence criteria of residual forces were used for
these nonlinear simulations with a tolerance of 1 × 10−3. The
maximum number of iterations per loading step was equal to
2, as shown in Table 3.

5. Conclusions

Themain conclusions of this work are as follows.
The formulation, implementation, and validation of a

discrete numericalmodel which predicts the cracking pattern
of a solid, considering infinitesimal strain, static loads, and
plane stress condition, are presented in this paper. A nonlin-
ear analysis with the finite element method is implemented.

This model assumes that the crack is produced between
the sides of the linear triangular elements, connected by the
link elements. The latter element type defines the activation
of the fracture process in accordance with the magnitude and

direction of the positive maximum principal stress. A link
element with high stiffness represents the noncracking zone
and a link element with null stiffness establishes the crack
path.

The exploded mesh is generated from the conventional
mesh one time in the simulation.This procedure separates the
sides of the triangular finite elements and joins the adjacent
nodes with the link elements, without modifying the original
geometry.

Linear elastic behavior of the triangular elements and
nonlinear behavior of the link elements in the explodedmesh
are taken into consideration. Initially, the tangent stiffness of
all link elements tends to infinity. In the following loading
steps of the nonlinear analysis, the tangent stiffness of several
link elements is reduced to zero in order to represent the
crack path. The simplicity and stability of this procedure
sustain a good approximation of the crack path, reduce the
computational cost, and allow implementing it on a standard
finite element code with few modifications. However, the
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Figure 14:Numerical and experimental crack path inExample 3: (a)
comparison between the discontinuity path in numerical model and
the crack path of experimental test [41] and (b) relative displacement
between nodes of the deformed shape of the numerical model.

structural response cannot be obtained because the cohesive
law in the cracking zone was not considered.

A simple procedure of correction of the discontinuity
path caused by the mesh alignment is presented. Here, the
orientation of the discontinuity path is defined by the link
elements with stiffness null. A link element loses the stiffness
when its orientation is nearest to the comparative direction
and the tensile strength is reached.The comparative direction
is defined by the direction of the positive maximum principal
stress. The difference between the link element orientation
and the comparative direction is used in order to correct the
comparative direction in the next set of overlapping nodes.

This procedure presents successful results of the discon-
tinuity path of several examples of three-point beam with
nonconcentric notch, subjected to the simultaneous action

of normal and shear stresses. The topology of the numerical
discontinuity path depends on the size and orientation of the
finite elements. However, the finestmeshes of Examples 1 and
2 show that the difference with respect to experimental test
is negligible. Example 3 shows lesser accuracy because of the
strong curvature of the real crack. Generally, the numerical
model exhibits a good approximation of the cracking pattern,
usingmeshes of about 400 triangular elements at height of the
beam.

The discontinuity paths of Examples 2 and 3 obtained
with the finest mesh of the proposed model are similar to
the ones computed by other authors using different numerical
models. The advantages of the proposed model compared to
discrete crack approaches with interface elements can be the
implementation simplicity, the numerical stability, and the
very low computational cost. In the proposedmodel, once the
conventionalmesh is modified, a nonlinear problem is solved
with elastic triangle elements and inelastic link elements
which are normally included on finite element software. The
simulation with greater values of the initial stiffness of the
link elements does not affect the discontinuity path and the
stability of the numerical solution. This value is limited by
the precision of the computer. The exploded mesh procedure
presented in thismodel avoids the regeneration or adaptation
of the mesh during the formation of crack and consequently
the computational cost is low.

The tests of structural members of brittle material rein-
forced with ductile material, for example, the reinforced
concrete beams, exhibit several cracks. These tests could be
simulated using the proposed numerical model. In future
works, no models and others failure criteria of the fracture
process could be implemented in order to describe the
structural response.
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[25] I. Carol, C.M. López, andO. Roa, “Micromechanical analysis of
quasi-brittle materials using fracture based interface elements,”
International Journal for Numerical, vol. 52, no. 1-2, pp. 193–215,
2001.

[26] A. Caballero, K. J. Willam, and I. Carol, “Consistent tangent
formulation for 3D interface modeling of cracking/fracture in
quasi-brittle materials,” Computer Methods in Applied Mechan-
ics and Engineering, vol. 197, no. 33–40, pp. 2804–2822, 2008.

[27] A. Caggiano, G. Etse, and E. Martinelli, “Zero-thickness inter-
face model formulation for failure behavior of fiber-reinforced
cementitious composites,”Computers and Structures, vol. 98-99,
pp. 23–32, 2012.

[28] V. P. Nguyen, “An open source program to generate zero-
thickness cohesive interface elements,” Advances in Engineering
Software, vol. 74, pp. 27–39, 2014.

[29] O. L. Manzoli, A. L. Gamino, E. A. Rodrigues, and G. K. S.
Claro, “Modeling of interfaces in two-dimensional problems
using solid finite elements with high aspect ratio,” Computers
and Structures, vol. 94-95, pp. 70–82, 2012.

[30] O. L. Manzoli, M. A. Maedo, L. A. G. Bitencourt, and E. A.
Rodrigues, “On the use of finite elements with a high aspect
ratio formodeling cracks in quasi-brittlematerials,”Engineering
Fracture Mechanics, vol. 153, pp. 151–170, 2016.
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