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Abstract: Objectives. The purpose of this work was to determine the influence of residual alumina
after sand blasting treatment in titanium dental implants. This paper studied the effect of alumina on
physico-chemical surface properties, such as: surface wettability, surface energy. Osseointegration
and bacteria adhesion were determined in order to determine the effect of the abrasive particles.
Materials and Methods. Three surfaces were studied: (1) as-received, (2) rough surface with residual
alumina from sand blasting on the surface and (3) with the same roughness but without residual
alumina. Roughness was determined by white light interferometer microscopy. Surface wettability
was evaluated with a contact angle video-based system and the surface free energy by means of
Owens and Wendt equation. Scanning electron microscopy equipped with microanalysis was used to
study the morphology and determine the chemical composition of the surfaces. Bacteria (Lactobacillus
salivarius and Streptococcus sanguinis) were cultured in each surface. In total, 110 dental implants
were placed into the bone of eight minipigs in order to compare the osseointegration. The percentage
of bone-to-implant contact was determined after 4 and 6 weeks of implantation with histometric
analysis. Results. The surfaces with residual alumina presented a lower surface free energy than
clean surfaces. The in vivo studies demonstrated that the residual alumina accelerated bone tissue
growth at different implantation times, in relation to clean dental implants. In addition, residual
alumina showed a bactericidal effect by decreasing the quantity of bacteria adhering to the titanium.
Conclusions. It is possible to verify the benefits that the alumina (percentages around 8% in weight)
produces on the surface of titanium dental implants. Clinical relevance. Clinicians should be aware
of the benefits of sand-blasted alumina due to the physico-chemical surface changes demonstrated in
in vivo tests.

Keywords: titanium implants; osseointegration; surfaces; alumina

1. Introduction

Sand blasting or grit blasting is a widely used surface treatment method in order
to achieve the appropriate roughness of the titanium dental implants in relation to the
biological response. Alumina particles (Al2O3) are the most commonly used for this
purpose, followed by an acid etching treatment. Sand blasting treatment produces a
macroroughness with very abrupt peaks and valleys, and it is the acid treatment that
rounds the structure and causes a micro-roughness within the macroroughness exerted
by the abrasive projection. It is well known that acid treatment alone does not produce
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the right roughness for biological osseointegration. Sand blasting is the key treatment to
obtain a favorable titanium surface [1–3]. Furthermore, many types of abrasives have been
used, but the particles must be harder than titanium to produce roughness, and this fact
means that materials, such as titanium oxides, calcium phosphates, among others, cannot
be successfully applied as they do not obtain the appropriate roughness [4–6]. Alumina
is the most commonly used abrasive by commercial companies and most implants are
treated with these particles, as they give excellent osseointegration results and in no case
have foreign body reactions or allergic effects. However, it is not only the nature of the
abrasive that has an effect, but also the projection parameters, such as the distance from
the projection gun to the titanium surface, the projection pressure, the saturation time,
projection diameter, etc. In addition, there are other parameters of the alumina that will
influence the roughness, such as the size or shape of the particles.

The sand blasting produces a roughness, the value of which depends on the size, nature
of abrasive particles, projection pressure and the distance from the gun to the titanium
surface. The roughness, ranging from 1 to 3 µm, is considered as an optimal surface for
osseointegration. A strong and rapid osseointegration is considered an important key for
the success of titanium dental implants [1–5].

Other techniques have been used to roughen the surfaces of dental implants, one of
the most recent being thermal spray processing (TPS), which is sometimes combined with
sand blasting and etching-acid treatments. This treatment produces roughness between
1.5 to 2 µm, which favors osseointegration [6,7].

Roughness plays an important role in osteoblast adhesion, proliferation and differentia-
tion. In addition, bacterial adhesion to the rough surface must be taken into account. Therefore,
we have to take into account the cells and bacteria to obtain the optimal surface [8,9].

Furthermore, the sand blasting produces a compressive residual stress on the surface,
which produces an increase in the mechanical properties, especially in the fatigue life [6–8].
The projection at a high pressure of abrasives produces an important increase in the
compressive residual stress on the surface. This compression hinders crack nucleation by
fatigue on the surface, being the crack nucleation on the matrix of around 10 µm from
the surface. This fact increases the number of cycles to nucleate the crack, produced by
mechanical cycles which produce an important improvement in the fatigue life and provide
the dental implant with an excellent long-term mechanical behavior [10–17].

Many authors have found other important parameters, which play roles in the rate
and quality of osseointegration: chemical composition, wettability, surface energy and zeta
potential, among others [18,19]. Sand blasting treatment increases the contact angles. As a
consequence, these implants have presented with more hydrophilic behavior. The results
of surface energy of the sand blasting implants, comparing dispersive or polar components
of surface energy, showed that there was a general trend in the polar component decreasing
when the samples were treated by sand blasting. The polar component is important, as it
can facilitate the adsorption of human osteoblast precursor proteins due to the negative
charge density on the surface [20,21]. An important requirement for the bone regeneration
on titanium dental implant is the cleanliness, and contamination could avoid the osseoin-
tegration. In the literature, this aspect has not been studied in depth and controversial
opinions can be found [22–26].

Moreover, the abrasive particles could favor the microbial contamination and in
consequence these could compromise the stability of dental implants, increasing the risk
of inflammatory reactions in the surrounding soft tissues. Several clinical tests [27,28]
studied the presence of different bacteria surrounding peri-implant soft tissues, showing
that treatment with 0.20% chlorhexidine improves the soft and hard peri-implant tissue
healing. These studies results have helped to select the bacteria to be considered for our
in vitro tests. The present study did not verify the bactericidal effect of the materials
because further studies should be carried out, although bacterial colony counts can give an
idea of the character of the material.
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The objective of this study was to assess the in vitro and in vivo behavior of three
different surfaces (as-received and two sand blasting with alumina: a batch with residual
alumina and another without alumina, due to the cleaning process) and analyze the effect
of the residual alumina on the surface in osseointegration and bactericide behavior.

2. Materials and Methods
2.1. Samples and Treatments

Ninety cylindrical samples (5 mm diameter, 2 mm width) were cut from a bar of
commercially pure titanium (cp-Ti) grade 3, with a chemical composition and mechanical
properties compliant with the standard ASTM F67:2006.

Three different surface conditions were studied:

• (Ctr). As-received lathed cut titanium samples (control samples).
• (Al2O3). Shot-blasted surfaces: The samples were shot-blasted with Al2O3 particles

with a size range of 212–300 µm at a pressure of 2.5 MPa until saturation. After the
blasted process, all specimens were washed with distilled water, ethylic alcohol and
acetone, sonicated in ultra-pure water, dried at room temperature, packaged and
autoclaved at 121 ◦C for 30 min.

• (Clean). Shot-blasted surfaces: The specimens were projected with alumina at the
same pressure of 2.5 MPa. The abrasive particles had the same size of the (Al2O3)
group. After the shot-blasted process, a special cleaning was performed. Samples were
ultra-sonicated in acetone at high pressure for 5 h. These samples were analyzed by
EDX microanalysis in order to ensure the absence of alumina particles. The sensibility
of the microanalysis was around 0.8%.

2.2. Implants

The screw-shaped dental implants (Essential by Klockner, Soadco Co, Escaldes Engor-
dany, Andorra) were 3.8 mm in diameter and 12.0 mm in length with 1.0-mm pitch and
1.5-mm long collar (batch series 0032-35789A309) (Figure 1). The dental implants used were
machined from the same batch of cp-Ti (grade 3) bar was used to fabricate the disks. One
hundred and ten dental implants were implanted for the in vivo study.

Figure 1. Essential implants by Klockner used in the research.

2.3. Surface Roughness and Topography

Roughness was evaluated by means of white light interferometer microscopy (Wyko
NT1100, Veeco, Plainview, NY, USA). The surface analysis area was 459.9 · 604.4 µm2 for
each measurement for all studied surfaces. Seven measurements were realized for each
sample. The analysis of the results was completed by Wyko Vision 232TM software (Veeco,
Plainview, NY, USA). The measurements of Sa and Sm were made in three different surfaces
of each type of surface treatment. Sa is defined as the arithmetic average of the absolute
values of the distance of all points of the profile to the mean line. Sm is the mean spacing
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between peaks. Finally, the index area is the ratio between the real surface area and the
nominal surface area.

The qualitative analysis of the topography was realized by means of a scanning
electron microscope (SEM) (JSM 6400, Jeol, Tokyo, Japan).

Surface wettability was evaluated with a contact angle video-based system (Con-
tact Angle System OCA15plus, Dataphysics, Filderstadt, Germany) and analyzed with
proprietary software (SCA20, Dataphysics Filderstadt,Germany). All the tests were real-
ized at a constant temperature and 100% relative humidity. Static contact angles, CA, of
three reference liquids (ultrapure distilled water (MilliQ), di-iodomethane and formamide)
were measured by the sessile drop method. 2 µL drops were dispensed on the substrate
surface under a controlled temperature (T = 25 ◦C) and 100% relative humidity. The wet-
tability was studied with the help of a contact angle goniometer (OCA 15+, Dataphysics,
Filderstadt, Germany).

Dispersion and polar components and the total surface free energy (SFE) for all series
were calculated. CA was measured with two different liquids on each material: ultrapure
distilled water (MilliQ) and di-iodomethane [29–31]. The SFE and its components were
obtained by means of Owens and Wendt equation [30,32,33].

γS = γd
S + γ

p
S (1)

γL·(1 + cos θ) = 2·((γd
L·γd

S )
1/2

+ (γ
p
L·γ

p
S)

1/2
) (2)

where γd is due to the interactions arising from induced and dipole-dipole forces (London
or ‘dispersion’), and γp is the ‘polar’ component arising from the interaction between
permanent dipoles.

2.4. Bacterial Strains and Growth Conditions

The bacteria strains S. sanguinis CECT 480 and L. salivarius (CECT 4063) (Colección
Española de Cultivos Tipo, Valencia, Spain) were used in this study. Bacteria were cultured
in Todd-Hewitt broth at 37 ◦C in a 5% CO2-enriched atmosphere.

Surface energy of the bacteria was determined according to an adaptation of the
microbial adhesion to solvents test (MATS) [34]. Besides, this method is a good method in
order to quantify the bacteria adhesion on titanium surfaces [35]. Bacteria were picked by
centrifugation at 4500 g for 15 min at 4 ◦C, and washed with phosphate buffered saline (PBS)
0.15 M. The bacteria quantification was realized by optical density measured at 550 nm
(A0). The liquids used as solvents, according to the MATS test were: hexane, diethyl ether
and chloroform. After that, 3 mL of bacteria suspension was placed in 9 tubes and 400 µL
of solvent was added (3 samples for each solvent), incubated at 22 ◦C for 10 min and mixed
on a vortex for 60 s. The aqueous phase was extracted after 15 min and its optical density
measured at 550 nm (A1). The average of microbial adhesion to solvent was calculated as:
(1 − A1/A0) × 100.

Samples were cleaned with 70% ethylic alcohol, acetone and distilled water, dried
at room temperature and sterilized in autoclave. The quantification of bacteria adhered
was realized using: Streptococcus sanguinis (CETC 480, Valencia, Spain) and Lactobacillus
salivarius (CECT 4063, Valencia, Spain), very usual in the mouth. C.p-Ti disks with 5 mm
diameter and 2 mm thickness were used in this study. Treated samples were placed into
24-well plates and incubated with 1 mL of bacterial suspensions (1 × 108 CFU/mL) for
2 h at 37 ◦C. After this time, the medium was aspired and samples washed twice with
PBS. Adherent bacteria were detached by vortexing the disks for 5 min in 1 mL of PBS.
These bacteria were then seeded using serial dilutions on TH agar plates for S. sanguinis,
MRS agar plates for L. salivarius and tryptic soy agar for oral plaque. The plates were then
incubated at 37 ◦C for 24 h and the resulting colonies were counted.
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2.5. In Vivo Test

Each animal received 16 implants: 4 for control, 6 for Al2O3 and 6 for clean. Eight
implants were placed in each hemi-arcade of the mandibular bone. Four animals for each
time implant placement received dental implants and were sacrificed after 4 and 6 weeks
after surgery. In Figure 2, the implantation in the bone can be observed.

Figure 2. Insertion of the dental implants in the mandibular bone.

Eight 12-year-old female minipigs were used in the in vivo studies after ensuring that
the bone available to these animals was mature. The surgeries were performed according to
the protocol approved for this study by the Faculty of Veterinary Sciences of the University
of Cordoba (Spain) under the registration number P01/0144. The minipigs were fed a
soft diet until slaughter. Oral prophylaxis was performed 3 weeks prior to surgery in an
aseptic manner.

Four months prior to dental implant placement, single and multi-rooted extractions
of all teeth of each minipig were performed. After the extractions, the hemorrhages were
easily corrected and no severe swellings were observed, which resolved within a short
period of time. Radiographic images of the mandible and maxilla of each minipig were
taken 24 h before the surgeries to avoid the presence of root canals, and to design the
placement of the dental implants.

The animals were not fed one day before surgery. The minipigs were pre-anesthetized
with xylazine and ketamine and maintained under gaseous anesthesia (5% isoflurane/O2).
The minipigs were hydrated by infusion of lactated Ringer’s solution. Anesthesia was
monitored throughout by measuring heart rate, power and respiration rate of the animals.
The animals were picked at a certain frequency to check the corneal reflex [30,31].

Dental implants were placed in the mandible and maxilla of the animals according to
the drilling technique proposed by the implant manufacturer. After surgery, the implant
collars were exposed and held at gingival level. After placing the implants in the bone
bed, the flap margins were adapted and sutured without tension using bioresorbable
polyglycine 910-Vycril© 3-0, Ethicon, Raritan, NJ, USA.

After surgery and in order to avoid pain, buprenorphine HCl and amoxicillin were
administered to prevent infection. The animals were observed several times a day for
possible problems, especially inflammation, dehiscence and infection.

After animal sacrifice, 16 mm thick sections including implants, alveolar bone and
surrounding mucosa were cut with a diamond saw irrigated with tissue elasticity change
control and titanium to avoid fractures in the specimens (Accutom 50, Struers, Cleveland,
OH, USA) and were radiographed. The specimens were cleaned in sterile saline and placed
in 10% buffered formalin solution [36,37].

Tissue sections with the implant were fixed for 5 days in 10% formalin solution, de-
hydrated in ethanol solutions (70%, 80%, 96% and 100% alcohol for 3 days each) and



Materials 2022, 15, 178 6 of 15

polymerized in molds for fixation using molds (Exact 41440-4150, Exact Apparetabau
GmbH, Norderstedt, Germany). A light-curing resin (Technovit 7200 VLC, Sulzer, Win-
tertur, Swiss) was used using the polymerization unit (Exact 520–530, Exact Apparatebau
GmbH, Norderstedt, Germany). The polymerization process was carried out with yellow
and blue light irradiation for 12 h. The implants were embedded in a polymerization unit.

The samples in the polymeric blocks were cut (Accutom 50, Struers, Cleveland, OH,
USA) midaxially in a buccolingual plane into 200 µm thick sections; and cut by the cut-
grind technique to obtain a final polished 50 µm thick section. Subsequently, they were
stained with toluidine blue (Toluidine Blue O, Fisher Scientific, Hampton, NH, USA)
for 20 min. For histopathological and histometric study, a digital camera system (DP12,
Olympus, Tokyo, Japan) coupled to a light microscope (BX51, Olympus, Tokyo, Japan)
and image analysis software (MicroImage 4.0, Olympus, Tokyo, Japan) were used. X80
images were taken in all regions with special interest in the lower part of the implant
neck. Global histomorphometry was carried out using a custom-made program based
on an image processing system (Quantimet 500 MC, Leica, Cambridge, UK). The level
of osseointegration of the dental implants was determined by the percentage of bone-to-
implant contact (BIC) along the entire length covered by the images. In addition, from the
histologies, the bone ingrowth into the threads (BAT) and the bone density was calculated
1 mm outside the implant threads (ROI). More than 1000 samples were analyzed with the
optical microscope [30,31].

2.6. Statistical Analysis

Statistically significant differences among test groups studied were evaluated using
statistical software (MinitabTM 13.1, Minitab Inc., Philadelphia, PA, USA). ANOVA ta-
bles with multiple comparison Fisher test were calculated. The level of significance was
established at p-value < 0.05.

3. Results

Figure 3A shows the dental implant surface as-received without sandblasting treat-
ment. Figure 3B shows the roughness in 3D by interferometric microscope and Figure 3C
shows the X-ray microanalysis, where only titanium was detected.

Figure 3. (A) Surface of the as-received sample observed by SEM. (B) Roughness in 3D image.
(C) X-ray microanalysis.
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Figure 4A corresponds to the shot blasted titanium containing residual Al2O3, show-
ing the roughness of the titanium. At higher magnifications, the presence of alumina
particles on the titanium surface can be observed (Figure 4B). Figure 4C showed the 3D
roughness by interferometric microscope, also showing the presence of aluminum by the
X-ray microanalysis (Figure 4D).
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The values of the roughness parameters obtained are shown in Table 1. The differences
obtained for the roughness parameters Sa, Sm and index area confirmed no statistically
significant differences (p < 0.05) between the samples with residual alumina and the absence
of the residual abrasives.

Table 1. Roughness of the titanium surface. Statistical differences for each column are indicated by
single asterisk and double asterisk symbols (p < 0.05).

Sa (µm) ± SD Sm (µm) ± SD Index Area ± SD

Ctr 0.21 ± 0.02 * 0.34 ± 0.02 * 1.09 ± 0.01 *

Al2O3 2.35 ± 0.13 ** 5.41 ± 0.21 ** 1.18 ± 0.06 **

Clean 2.34 ± 0.25 ** 5.67 ± 1.07 ** 1.16 ± 0.04 **

In order to ensure the surface cleanliness of the dental implants, 20 EDS microanalysis
was performed on different areas of the surfaces to observe the X-ray diffractograms for
each sample. When none of them showed peaks corresponding to aluminum, the samples
were considered clean. From the results of microanalysis, the samples contaminated with
residual alumina on the surface presented around 9.23% ± 6.22%. For the samples cleaned,
the presence of aluminum was lower than the sensibility of the EDS microanalysis, 0.80%.

The water contact angles (CA), and the calculated values for the surface free en-
ergy (SFE) and its compounds following the Owens and Wendt approach are shown in
Tables 2 and 3 [19,29–31]. Overall, the grit-blasting treatment decreased surface wettability,
i.e., increased CA. This effect was particularly pronounced for those surfaces grit-blasted
with residual particles of Al2O3.

Table 2. Apparent contact angles for the three liquids used on the different c.p. Ti surfaces. Values are
mean ± standard deviation. Statistical differences vs. smooth surfaces for each column are indicated
by single and double or triple asterisk symbols (p < 0.05).

Surface Water
CA’ [◦]

Di-Iodomethane
CA’ [◦]

Formamide
CA’ [◦]

Ctr 66.3 ± 0.5 * 51.5 ± 0.9 * 51.8 ± 1.0 *
Alumina 75.4 ± 0.5 ** 62.2 ± 1.2 ** 59.3 ± 2.0 **

Clean 66.8 ± 0.7 * 38.5 ± 1.4 *** 35.0 ± 1.7 ***

Table 3. Surface energy and its components for the different Ti surfaces. Values are mean ± standard
deviation. Statistical differences for each column are indicated by single asterisk and double asterisk
symbols (p < 0.05).

Surface
Surface Energy (mJ/m2)

Total Dispersive Component Polar Component

Ctr 40.0 ± 3.5 * 24.8 ± 3.2 * 15.2 ± 4.0 *
Alumina 28.2 ± 1.9 ** 17.7 ± 1.1 ** 10.5 ± 3.1 **

Clean 38.8 ± 2.5 * 26.8 ± 2.6 * 11.0 ± 3.4 **

When comparing dispersive or polar components of SFE, there was a general trend
in the polar component to decrease when the samples contained the presence of alumina
(Table 3). Statistically significant differences in the polar component of rough surfaces with
alumina with respect to control and clean surfaces were determined for the samples treated
with the largest particles.

The values of colonies forming unities (CFU’s) per square millimeter (p < 0.005)
are shown in Table 4, both strains showed a lower trend to attach on control than on
rougher surfaces [38]. However, on rougher surfaces with Al2O3, results showed less
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bacteria attached in both strains compared to the clean samples. In the case of L. salivarius,
the number of bacteria on all kinds of surfaces was significantly higher compared with
S. sanguinis. Furthermore L. salivarius showed the same arrangement on all surfaces,
showing clusters and short chains.

Table 4. CFU’s quantification for different titanium surfaces. Statistical differences are expressed by a
single asterisk for each column (p < 0.05).

Material S. Sanguinis CFU’s L. Salivarius CFU’s

Control 4.09 × 101 ± 8/mm2 6.21 × 103 ± 4.75 × 102/mm2

Al2O3 4.94 × 101 ± 12/mm2 6.93 × 103 ± 6.45 × 102/mm2

clean 9.73 × 101 ± 9/mm2 * 8.09 × 103 ± 4.88 × 102/mm2 *

As the Al2O3 and clean samples presented the same roughness, these results showed
the possible trend to bacteria adhesion on surfaces correlated to particles chemical compo-
sition because in general the CFU´s/mm2 was lower on Al2O3 shot-blasted compared to
control and clean surfaces.

Increased roughness (Al2O3 and clean) produced a greater amount of bone and BIC.
These results demonstrate that roughness results in an increased ability to attract osteoblasts
to initiate bone remodeling (Table 5) In Tables 6 and 7 are shown the BAT and ROI of the
differebr dental implants after 4 and 6 weeks of implantation. From the images the results
were quantified by histomorphometric analysis, showing significantly higher results for
the Al2O3 samples after 4 and 6 weeks of implantation (Figure 6) [39].

Table 5. Bone index contact (BIC) for different types of Ti dental implant surfaces and after 4 and 6
weeks of implantation. Statistical differences for each column are indicated by single asterisk and
double or triple asterisk symbols (p < 0.05).

Material 4 Weeks 6 Weeks

Control 22% ± 5% * 27% ± 8% *
Al2O3 49% ± 10% ** 70% ± 9% **
clean 34% ± 6% *** 55% ± 8% ***

Table 6. Total bone area (BAT) for different types of Ti dental implant surfaces and after 4 and 6
weeks of implantation. Statistical differences for each column are indicated by single asterisk and
double or triple asterisk symbols (p < 0.05).

Material 4 Weeks 6 Weeks

Control 16% ± 4% * 19% ± 7% *
Al2O3 42% ± 9% ** 62% ± 8% **
clean 29% ± 6% *** 45% ± 5% ***

Table 7. Region of interest (ROI) bone growth for different types of Ti dental implant surfaces and
after 4 and 6 weeks of implantation. Statistical differences for each column are indicated by single
asterisk and double or triple asterisk symbols (p < 0.05).

Material 4 Weeks 6 Weeks

Control 21% ± 7% * 29% ± 6% *
Al2O3 44% ± 6% ** 68% ± 8% **
clean 32% ± 5% *** 50% ± 7% ***
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Figure 6. Histologies of the dental implants after 4 and 6 weeks of implantation for the three
surfaces studied.

In vivo tests are very important in providing information about biological reaction to
implants. Histological studies demonstrate that the presence of residual blasting of Al2O3
favors the osseointegration of titanium dental implants [40].

Even as referred to in other articles, residual alumina particles cause an increase in
osteoblastic adhesion, proliferation and differentiation [41,42] due to their negative charge,
which causes a certain selective protein adsorption, especially of fibronectin that favors
osteoblastic migration to the surface. These results and the wide clinical application of
titanium shot-blasted dental implants with Al2O3 demonstrate the fallacy that debris can
negatively affect osseointegration. From the ROI and BAT studies it can be seen that in both
cases the dental implants with alumina have a higher amount of bone. What is remarkable
is that the bone is mature and well formed.

4. Discussion

Abrasive blasting increases the roughness and decreases surface wettability and the
total surface energy, increasing the reactivity [29]. This effect was more pronounced for
surfaces with residual alumina. It is well known that surface properties influence cell
interaction, orientation, migration, growth and differentiation of adherent cells. This
interaction is strongly influenced by the organization and adsorption of surface-associated
adhesive proteins.

It is important that the surface of an implant has a hydrophilic surface, which improves
cellular anchorage and vascularization in the area, since the level of vascularization of the
peri-implant tissues in the area of contact with the tissues is very poor, thus improving
healing and reducing inflammation of these tissues [29,30,43–46].

In our study, the contact angle values in water were 75.4◦ for the alumina surface
and 66.8◦ for the clean surface. According to the usual classification, both surfaces are
considered weakly hydrophilic, as the contact angle is less than 90◦ [29,31,43,44].

The surface free energy of a solid is constituted by the addition of its polar and
dispersive components. The higher the non-polar or dispersive character of a surface,
the more difficult adhesion is in general because it depends on the liquid on the surface.
The opposite is true for a surface of a more polar character, which reflects hydrophilic
interactions [31]. In our study, no statistically significant differences were observed in the
polar component between the alumina and clean groups. Both types of surface samples
presented indentations and craters, giving rise to heterogeneous surfaces with concavities
that could have influenced, decreasing wettability and surface energy in relation to the
control surface.
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The bacterial adhesion on titanium surfaces presents different stages: the migration of
the bacteria to the surface, the adhesion, the attachment and the colonization in order to
produce a biofilm. One of the most important factors to influence bacterial adhesion is the
surface roughness and morphology. In addition, other factors are the hydrophobicity and
surface free energy [30,31].

Roughness will provoke plaque formation and maturation, and high-energy surfaces
will collect more bacteria, will bind the plaque more strongly and will select specific bacte-
ria. Although both variables interact with each other, the influence of surface roughness
overrules that of the surface free energy. From the results of our study (Table 4), the samples
treated with sand blasting presented a higher bacteria adhesion than the control, showing
the key role of the roughness on the microbiological behavior. Furthermore, from these
results, it can be observed that the samples with residual alumina showed lower bacterial
adhesion in both (S. Sanguinis and L. Salivarius) than the clean implants. This fact is due
to the decrease in the surface energy produced by the alumina on the titanium surfaces in
relation to clean surfaces [30,33,47].

The use of alumina has been controversial because some authors comment on the
potential risk of the presence of residual blasting particles, with dissolution of aluminum
ions into the host tissue not being able to be excluded. This fact has not been demonstrated
and is only a comment in their contributions. The authors reported that the aluminum
ions may inhibit normal differentiation of bone narrow stromal cells and normal bone
deposition and mineralization [36,48]. Besides, aluminum has been shown to induce net
calcium efflux from culture bone [48]. It is well known that the aluminum oxide (alumina) is
considered bioinert and is insoluble. The ion release of aluminum from alumina immersed
in simulated body fluid (SBF) is much lower than Ti-6Al-4V [49–51].

In addition, the studies that are often referenced are on femoral hip balls made of
alumina. This orthopedic application is very different from that of dental implants, since
the femoral ball is made entirely of alumina and in our dental implants the surface content
is approximately 8%. Furthermore, the mechanical stresses and wear conditions in hip
prostheses are not comparable with dental implants [11,52,53]. Therefore, the comparisons
are not appropriate.

Some contribution explains that the aluminum may compete with calcium in the
healing implant bed, and aluminum can accumulate at the mineralization front and in the
osteoid matrix itself [5]. Nimb et al. [54] found that aluminum inhibited the formation of
calcium phosphate crystal and the hydroxyapatite crystalize poorly in a study in Beagle
dogs. However, Quarles et al. [55] demonstrated that the aluminum stimulated bone
formation with an important increase in trabecular bone volume. In this sense, the study of
Lau et al. [42] also showed that the presence of aluminum ions favors the bone formation in
an in vitro study. It is important to note that some studies do not work with the presence of
alumina but with aluminum ions, and this fact can give completely opposite results [56–58].
It is well known that compounds of a metal have very different properties from the pure
metal and its ions [53].

Several researchers, such as Feighan et al. [59] and Piatelli et al. [26] studied the
biological behavior with Al2O3. In the first, they showed that the blasted implants presented
woven and lamellar bone in direct apposition to the implant surface, and this fact was
demonstrated in the active bone formation towards the implants. In the second research, the
histological results did not provide evidence to support that the residual aluminum oxide
particles on the dental implant affect osseointegration. Besides, very low levels of trace
aluminum have been found in various organs and in blood when alumina was used [60].
Piatelli et al. [26] in their interesting study indicated that there is no significant effect of
alumina on osseointegration. However, this work did not determine the effectiveness of
the decontamination process of dental implants, nor did it determine the residual alumina
content or parameters, such as roughness, contact angle and other surface properties. In
addition, the rabbit animal model, having virtually no trabecular bone, may affect the
histology results. The uniqueness of our study is that all dental implants have been sand
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blasted in the same way and under the same conditions. Consequently, all dental implants
have the same roughness and the same surface energy. Cleaning treatments on a batch of
dental implants after sand blasting removes the alumina residues but does not affect the
topography of the implant. Having some implants treated with sand blasting and others
not gives rise to differences in surface roughness and surface energy that result in different
behaviors. This work complements this study.

As reported in Feighan’s [59] and Piatelli’s [26] publications, in our in vivo study, any
toxic effect due to alumina nor inflammation reaction differences between the clean or
alumina surfaces were reported.

In our study, statistically significant differences were found between the implants with
residual alumina and the cleaned implants regarding bone-implant contact. This fact is due
to the effect of alumina on the wettability and surface energy, which favors the osteoblast
activity. It should be noticed that this new bone tissue is continuous with the lamellar
bone filling the threads of the implant outer area (ROI). The new formed tissue held a
high level of maturity in all evaluated regions with a general prevalence of lamellar tissue
with some osteons and a rare presence of woven bone tissue. These results are in contrast
with those found with Ti-6Al-4V alloy implants, where differences in bone-implant contact
percentages or removal torques values were presented by Wennenberg et al. The roughness
of these samples were different between samples [37,60]. These authors confirmed that
the detected amounts of Al are much higher on Ti-6Al-4V and the ion release level of the
alumina were traces lower than 5 ppb for 1 month [61]. It is well known that aluminum
oxide is very stable with a negligible solubility index, with this oxide considered insoluble
and therefore the action of aluminum ions is practically negligible [49,51].

On the other hand, Esposito et al. [62] found that residual abrasive particles are not the
cause of the failures or fractures of the dental implants. The fractures are due to the positive
residual stresses (tensile) on the surface produced by a deficient sand blasting process.
Aparicio et al. [63] also demonstrated that the dental implants with residual alumina did
not present a higher corrosion rate in relation to the clean implants due to the bioinert
character of the alumina. However, when SiC is used as an abrasive, this carbide produces
an increase in the corrosion rate due to SiC can be oxidized to SiO2 [63].

5. Limitations of the Study

The study demonstrates that residual alumina improves osseointegration in titanium
with the same roughness. However, X-ray energy dispersive microanalysis analysis has a
sensitivity of 0.8% and more sensitive techniques could be used to quantify more accurately
the percentage of residues. Furthermore, this bacterial study is on adhesion, but biofilm
studies are necessary to be able to conclude in a more rigorous way the bactericidal capacity
of the surface with residual alumina. Further studies with different bacterial strains are
needed to determine the mechanism of the possible bactericidal effect.

6. Conclusions

It can be stated that roughness is the most important surface parameter for osteoblast
adhesion, osseointegration as well as for the colonization of microorganisms. It has been
also demonstrated that alumina residues used as abrasives (approx. 8%) in titanium
implants result in a more hydrophobic surface with a lower surface energy than the dental
implants without alumina residual. These physico-chemical parameters favor osteoblast
cell adhesion. The lower surface energy and the polarity of the alumina reduced the
colonization of the bacteria studied (L. Salivarius and S. Sanguinis) compared to dental
implants with the same surface roughness but without the presence of alumina. In vivo
tests showed a statistically higher level of bone implant contact (BIC) than cleaned implants.
Further studies will be needed to determine the effects of wettability and surface energy on
osteoblastic activity, and also the possible bactericidal effect of alumina. Further studies will
undoubtedly be necessary to confirm the bactericidal effect of titanium and to determine
the mechanisms of this behavior.
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