
International  Journal  of

Environmental Research

and Public Health

Article

Effects of Diacutaneous Fibrolysis on Passive Neuromuscular
Response and Mechanosensitivity in Athletes with Hamstring
Shortening: A Randomized Controlled Trial

Aida Cadellans-Arróniz 1,2,† , Carlos López-de-Celis 1,2,3,† , Albert Pérez-Bellmunt 1,2,* ,
Jacobo Rodríguez-Sanz 1,2 , Luis Llurda-Almuzara 1,2 , Vanessa González-Rueda 1,2,3

and Pere Ramón Rodríguez-Rubio 1

����������
�������

Citation: Cadellans-Arróniz, A.;

López-de-Celis, C.; Pérez-Bellmunt,

A.; Rodríguez-Sanz, J.;

Llurda-Almuzara, L.;

González-Rueda, V.;

Rodríguez-Rubio, P.R. Effects of

Diacutaneous Fibrolysis on Passive

Neuromuscular Response and

Mechanosensitivity in Athletes with

Hamstring Shortening: A

Randomized Controlled Trial. Int. J.

Environ. Res. Public Health 2021, 18,

6554. https://doi.org/10.3390/

ijerph18126554

Academic Editor: Paul B. Tchounwou

Received: 29 April 2021

Accepted: 16 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Carrer de Josep Trueta,
Sant Cugat del Vallès, 08195 Barcelona, Spain; acadellans@uic.es (A.C.-A.); carlesldc@uic.es (C.L.-d.-C.);
jrodriguezs@uic.es (J.R.-S.); lllurda@uic.es (L.L.-A.); vgonzalez@uic.es (V.G.-R.); prodriguez@uic.es (P.R.R.-R.)

2 ACTIUM Functional Anatomy Group, Carrer de Josep Trueta, Sant Cugat del Vallès, 08195 Barcelona, Spain
3 Fundació Institut Universitari per a la Recerca a l’Atenció Primaria de Salut Jordi Gol i Gurina,

08007 Barcelona, Spain
* Correspondence: aperez@uic.es
† Aida Cadellans-Arróniz and Carlos López-de-Celis contributed equally to this work.

Abstract: Introduction. Diacutaneous Fibrolysis is defined as specific instrumental intervention
to normalize function in the musculoskeletal system. It is considered a treatment method for the
mechanical alterations of the locomotor system, and it is widely used in sports for therapeutic and
preventive purposes. Despite the clinical benefits observed in different musculoskeletal conditions,
the action mechanism of diacutaneous fibrolysis remains uncertain. There are no studies evaluating
the neuromuscular response on the posterior muscular chain of the lower extremity in athletes,
where overload, stiffness, and injury incidence are high. Objective. To evaluate the immediate, and
30 min post treatment effects of a single diacutaneous fibrolysis session on passive neuromuscular
response and mechanosensitibity on hamstring and gluteus in athletes with shortening. Design.
A randomized within participant clinical trial. Methods. Sixty-six athletes with hamstring shortening
were included (PKE < 160). The lower limbs were randomized between the experimental limb
and control limb, regardless of dominance. A single session of diacutaneous fibrolysis was applied
to the posterior gluteus maximus, biceps femoris, and semitendinosus of the experimental lower
limb whereas the control limb was not treated. Viscoelastic muscle properties (myotonometry),
contractile muscle properties (tensomiography), and mechanosensitivity (algometry) were tested
before treatment (T0), after treatment (T1), and 30 min post treatment (T2). Results. Regarding
viscoelastic properties, in the intra-group analysis we found statistically significant differences in
the experimental limb at T1, decreasing muscle stiffness in gluteus maximus (p < 0.042), in biceps
femoris (p < 0.001) and in semitendinosus (p < 0.032). We also observed statistically significant
differences in Tone decrease (p < 0.011) and relaxation increase (p < 0.001) in biceps femoris. At T2,
the decrease in stiffness in all tested muscles was maintained (p < 0.05). There were statistically
significant inter-groups differences in stiffness on gluteus (p < 0.048) and biceps femoris (p < 0.019)
and in tone on biceps femoris (p < 0.009) compared to the control limb. For contractile properties,
we only found statistically significant differences on maximal radial displacement (Dm) in gluteus,
both control and experimental at T2 (p < 0.05) and in biceps femoris control (p < 0.030). No changes
were found in the mechanosensitivity. Conclusions. A single session of diacutaneous fibrolysis
produces changes in some parameters related to viscoelasticity properties of the biceps femoris and
gluteus. There were no changes on contractile properties on semitendinosus. Only small changes
on the contractile properties on the gluteus maximus and biceps femoris were found. No effect was
found on the mechanosensitivity of the posterior chain muscles in athletes with hamstring shortening.
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1. Introduction

Diacutaneous Fibrolysis (DF) is defined as “specific instrumental intervention to
normalize function in the musculoskeletal system” [1]. It is considered a treatment method
for the mechanical alterations of the neuromuscular system. It is applied by means of
metallic hooks, ending in a spatula with beveled edges that seems to allow a deeper and
more precise application, compared to the manual approach [2–4]. A recent systematic
review and meta-analysis has been recently published reporting the effectiveness of DF
on pain, range of motion, and function in musculoskeletal disorders, such as subacromial
impingement syndrome, symptomatic patients with carpal tunnel syndrome, and chronic
lateral epicondyalgia. However, none of the studies included focused on the lower limb [5].
The relationship between hamstring flexibility and injury has been widely investigated.
Hamstring shortness has become an important risk factor for hamstring strain injury and
loading changes in lower extremity biomechanics [6]. Moreover, hamstring shortness is
neuromechanically characterized by an altered muscle length-tension relationship and
muscle recruitment patterns. It is described that hamstring overactive-induced shortness
changes sarcomere and viscoelastic properties [7,8]. Hamstring injuries are the most
common muscle injury in athletes, involving mild alterations up to the complete loss of
fiber organization, accounting for almost 30% of lower limb injury [6]. Specifically, the
biceps femoris is the most commonly muscle injured (84%), followed by semimembranosus
(12%) and the semitendinosus (4%) [9].

Despite the clinical benefits observed in different musculoskeletal conditions, the
action mechanism of DF remains uncertain. It is not known whether this effect is a result
of tension changes in the tissue (improvements on elasticity and stiffness) or due to reflex
aspects, as suggested in other studies [10]. The Neuromuscular Response (NMR) is a
set of biomechanical and viscoelastic properties of the myofascial tissue that prepare
the muscle to perform a mechanical work as a result of muscular and nervous system
function [11]. Myometry and tensiomyography are two tools used to assess NMR by
analyzing different properties of muscle and fascial tissue [12]. Nevertheless, a study
was recently published evaluating the DF effect on gastrocnemius NMR, in asymptomatic
subjects, where a decrease in muscle tone and stiffness was found, maintaining its effects
30 min after the treatment [13].

In order to improve athletic performance, different soft tissue mobilizations techniques
has been studied before in athletes [8,14,15]. DF is widely used in sports, for therapeutic
and preventive purposes, but we have only found one study focuses on anterior knee
pain, in athletes [16]. There are no studies evaluating its neuromuscular response effects
in athletes with hamstring shortening, where overload, stiffness, and injury incidence
are high [13,17–19]. Thus, the aim of this study is to evaluate the immediate and 30-min
post treatment effects of a single diacutaneous fibrolysis session on viscoelastic and con-
tractile muscle properties and mechanosensitibity on hamstring and gluteus in athletes
with shortening.

2. Materials and Methods
2.1. Study Design

A randomized within participant (1:1) clinical trial was conducted. The study was reg-
istered at clinicaltrials.gov (study code: NCT04778293). The study protocol was approved
by the local ethics committee (Comitè d’Ètica de Recerca—CER Universitat Internacional
de Catalunya, study code: FIS-2020-04). The procedures followed were in accordance with
the Declaration of Helsinki 1975, Fortaleza 2013. The study was conducted on the Uni-
versitat Internacional de Catalunya premises. All research was performed in accordance
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with Consort and TIDier guidelines/regulations. Informed consent was obtained from all
participants before the intervention began.

2.2. Sample Size Calculation

The sample size was calculated based on, Alvarez-Diaz P. et al. findings [20]. The
sample size was calculated using the GRANMO 7.12 program, accepting a α risk of 0.05,
test two-side, a β risk of 0.20, with 3.4 of SD and 1.8 mm of difference for maximal radial
displacement (Dm) of the tensiomigografphy for the biceps femoris. We estimated a
follow-up loss of 15%, which would require 66 limbs per group.

2.3. Sample Selection Criteria

Sixty-six athletes from the Faculty of Medicine and Health Sciences of the Uni-
versitat Internacional de Catalunya were recruited between February to April 2021 to
voluntarily participate.

The inclusion criteria comprised (1) being athletes over 18 years old, (2) being reg-
istered in a club or institution where they compete and practice sports on a regular
basis, (3) having a hamstring shortening on both limbs (Passive Knee Extension test
(PKE) < 160◦) [21] and (4) signed the informed consent. The exclusion criteria were any
contraindication related to diacutaneous fibrolysis such us poor skin or trophic condition,
taking anticoagulants, suffering from any inflammatory process, or recent musculoskeletal
lower limb injury (<6 month).

2.4. Randomization and Allocation

The limb assigned for diacutaneous fibrolysis treatment was randomized and the
other limb was considered as the control. For the randomization process, an external
evaluator did a randomization list prior to the recruitment of the athletes, with a com-
puter program (www.random.org, accessed on 1 February 2021), that generated a list of
sequential numbers (1 to 66). The evaluator was unaware of the group assignment.

2.5. Measurements

Viscoelastic properties were considered as the primary outcome whereas contractile
properties and mechanosensitivity were considered as the secondary outcomes. The
collection and recorded measurements were performed by a clinical research, who was
blind to experimental/control limb assignment. The measurement instruments used were
independent of the influence of the assessor. The outcomes were measured at the beginning
of the study (T0), immediately after the DF intervention (T1), and 30 min after the DF
intervention (T2), at gluteus, biceps femoris, and semitendinosus muscles, in the order in
which they are presented below. All, measurements were performed in a prone position on
a padded bench.

2.6. Outcomes
2.6.1. Viscoelastic Properties

The tissue viscoelasticity were measured with the MyotonPro [ICC] = (0.80–0.93) [22,23]
(MyotonPro, Myoton Ltd., Tallinn, Estonia). Three individual measurements with a record-
ing interval of 1 s were performed and the mean values of stiffness (N/m), muscle tone
(Hz), and relaxation (ms) were used for data analysis. The probe at the end of the device
was placed perpendicular to the skin surface at the thickest point of the gluteus, biceps
femoris, and semitedinosus muscles, selected by palpation, after a small voluntary contrac-
tion (Figure 1). Once this point was identified, it was marked with a permanent marker to
ensure that the outcomes were taken in the same place for the subsequent measurements.

www.random.org
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Figure 1. (A) Biceps femoris TMG. (B) Biceps femoris myotonometry. (C) Biceps femoris mechansonsibility. (D) Gluteus
maximus TMG. (E) Semitendinosus TMG. (F) Gluteus maximus myotonometry. (G) Semitendinosus myotonometry.
(H) Gluteus maximus mechansonsibility. (I) Semitendinosus mechansonsibility.

2.6.2. Muscle Contractile Properties

Tensiomyograph (TMG) (TMG-BMC d.o.o., Ljubljana, Slovenia) was used for assessing
the muscle contractile properties. It has good reliability for lower extremity muscles [24,25].
Percutanheously, it induces a muscle contraction by means of an electrical stimulus, which
is detected by a digital transducer placed on the muscle belly to be evaluated (Figure 1). Self-
adhesive electrodes (TMG electrodes, TMG-BMC d.o.o., Ljubljana, Slovenia) were situated
equidistant to the measurement point, where the sensor was placed. The measurement
points were the same as in the myotonometry. Electrical stimulation was applied via a
TMG-100 System electrostimulator (TMG-BMC d.o.o., Ljubljana, Slovenia) with a pulse
of 1 ms and an initial amplitude of 10 mA. In each trial, the amplitude was progressively
increased in 10 mA increments, until there was no further increase in radial displacement
and maximum stimulator power (100 mA).

All TMG parameters depend on the maximum radial displacement (Dm), which is
the radial movement of the muscle belly after the application of the electrical stimulus,
expressed in mm. Other parameter obtained with the TMG is contraction time (Tc), which
is the time between 10% and 90% of Dm [9].

2.6.3. Mechanosensibility

Mechanical tenderness was assessed in the same measurement points by applying
progressive pressure until it reached 4 kg, by means of an algometer (handheld mechanical
pressure algometer (Trigger Plus, Palpatronic, Hagen, Germany) [26]. Each participant
was then asked to indicate whether he/she felt any pain sensation and to categorized it
in a numerical scale from 0 to 10 [0—no pain, 10—maximum pain). This procedure has
demonstrated good reliability [27,28].

2.7. Intervention

Participants received the DF intervention in one leg (experimental limb) previously
randomized and no intervention on the opposite leg (control leg), regardless of domi-
nance. A clinical researcher, with many years of experience in the technique, applied the
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DF. The study was conducted at the Functional Anatomy Laboratory of the Universitat
Internacional de Catalunya, between February and April 2021.

The experimental limb received DF treatment in the following musculature and inter-
muscular septa: quadratus lumbar, gluteus maixum, biceps femoris, and semitendinosus
(Figure 2). With the patient lying in the prone position, the application was started in the
lumbar paravertebral region, quadratus lumbar and iliac crest. The application continued
on the gluteal and trochanteric region, and then by the posterior part of the tensor fascialis
fascialis and vastus externus. It finished with the intermuscular septa between the vastus
externus and biceps, biceps femoris, and semitendinosus. The time required for each
diacutaneous session was about 10 min. The control limb did not receive any treatment.
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Figure 2. (A) Diacutaneous fibrolysis to paravertebral muscles, (B) Diacutaneous fibrolysis cuadratus lumbar, (C) Diacuta-
neous fibrolysis in gluteal area (D) Diacutaneous fibrolysis between vastus externus and biceps femoris. (E,F) Diacutaneos
fibrolysis in hamstring area.

The room temperature was controlled between 22 ◦C and 23 ◦C to avoid any alteration
of the mechanical properties of the muscle [9]. DF technique was applied with the necessary
pressure to encompass the structure to be moved. Brief rapid traction was applied in a
transverse direction with the hook fixed to the skin and underlying soft tissues. No lotion
was used.

2.8. Statistical Analysis

For statistical analysis, IBM SPSS Statistic 26.0 software was used. A descriptive
analysis was carried out. For quantitative variables, mean and standard deviation were
calculated. Frequencies were calculated for anthropometric qualitative variables. Normality
distribution was assessed using Kolmogorov–Smirnov test, in order to know whether to
use parametric or non-parametric tests.
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Repeated measures ANOVA with a Bonferroni post hoc test was used for within-limbs
changes over the measurement periods. Differences between limbs were observed using a
paired t-test for those variables normally distributed, and a Wilcoxon test for those with
non-normal distribution.

Effect sizes were calculated using Cohen’s d coefficient [1]. An effect size > 0.8 was
considered large; around 0.5, intermediate; and <0.2, small. Losses and exclusions after
randomization are explained in Figure 3. Significance level was set at p < 0.05.
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3. Results

Between February and April 2021, 73 volunteers were recruited (46 male, 27 female).
Seven athletes, all of them females, were excluded (PKE test > 160◦). The sample consisted
of 66 athletes (66 experimental limbs and 66 control limbs). The mean age was 21.7 years
(SD 3.5). There was no loss of follow-up (Figure 3).

The antrophometric characteristics of the sample are summarized in Table 1. No ad-
verse or side effects were recorded. Football (14 athletes, 21.2%) was the most representative
one across twenty registered sports. It was followed by Rugby with 8 athletes.
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Table 1. Characteristics of the participants.

Clinical Features Mean ± SD or n (%)
(n = 66)

Age (years) 21.7 ± 3.5

Sex
Men 46 (69.7%)
Women 20 (30.3%)

Height (cm) 175.5 ± 8.34

Weight (kg) 70 ± 11.89

BMI (kg/m2) 22.71 ± 2.86

Dominance
Right 50 (75.8%)
Left 16 (24.2%)

Abbreviations: SD, Standard Deviation; n, number, %, percentage; cm, centimeters; kg, kilograms; m, meters.

3.1. Viscoelastic Properties

In the intra-group analysis, we found statistically significant differences in the experi-
mental limb at T1 in the gluteus maximus stiffness with a decrease of 10.16 N/m (p < 0.042;
ES: 0.34). In biceps femoris we also observed statistically significant differences in Tone,
with a decrease of 0.39 Hz (p < 0.011; ES: 0.23), in stiffness with 13.91 N/m (p < 0.001;
ES: 0.37) and an increase in relaxation of 78 m/s (p < 0.001; ES: 0.29). A stiffness decrease of
9.72 (p < 0.035; ES: 0.20) on semitendinosus was also observed. At T2, there was a decrease
in stiffness in all tested muscles: for Gluteus was of 9.09 N/m (p < 0.029; ES: 0.35), for
biceps femoris of 6.50 N/m (p < 0.039; ES: 0.17) and for, Semitendinosus of 10.40 N/m
(p < 0.042; ES: 0.22). A decrease in Gluteus tone of 0.21 N/m (p < 0.021; ES: 0.25) was
maintained. Only the biceps femoris in T2 obtained a decrease in stiffness of 7.45 N/m
(p < 0.037; ES: 0.20) in the control group.

In the intergroup analysis, we found statistically significant differences in the differ-
ence between T0–T2, in gluteus maximus, in stiffness (p < 0.048), in biceps femoris, in
tone (p < 0.009) and in stiffness (p < 0.019). And between T0–T1, in the biceps femoris in
relaxation (p < 0.045) (Table 2).

3.2. Contractile Properties

For this variable, we only found statistically significant differences in the intra-group
analysis at T2. In the case of the experimental limbs, we found a decrease in the gluteus in
Dm of 0.97 mm (p < 0.011; ES: 0.32). In the control limbs, we found a decrease in the gluteus
at Dm 0.96 mm (p < 0.007; ES: 0.27) and a decrease in the biceps femoris at Dm of 0.60 mm
(p < 0.030; ES: 0.22). There were no changes for the semitendinosus in the experimental and
control limbs (Table 3).

In the intergroup analysis, we found no statistically significant differences between
the experimental and control limbs.

3.3. Mechanosensibility

We did not find statistically significant differences in the intra-group analysis for the
experimental and control limbs (p > 0.05) (Table 4), and neither for the intergroup analysis
(Table 5).



Int. J. Environ. Res. Public Health 2021, 18, 6554 8 of 14

Table 2. Intra-group viscoelastic properties analysis.

Variables
T0 T1 Difference T0–T1 T2 Difference T0–T2

Mean ± SD Mean ± SD Mean 95% CI p ES Mean ± SD Mean 95% CI p ES

Experimental Limbs

Gluteus
Tone (Hz) 11.01 ± 0.84 10.75 ± 1.55 −0.26 [−0.657; 0.133] 0.325 0.21 10.81 ± 0.74 −0.21 [−0.388; −0.024] 0.021 0.25
Stiffness (N/m) 159.70 ± 30.76 149.54 ± 29.07 −10.16 [−20.033; −0.286] 0.042 0.34 150.61 ± 19.80 −9.09 [−17.467; −0.715] 0.029 0.35
Relaxation (m/s) 31.33 ± 4.09 31.79 ± 5.18 0.46 [−1.021; 1.938] 1.000 0.10 31.42 ± 4.59 0.08 [−1.340; 1.510] 1.000 0.02

Biceps Femoris
Tone (Hz) 15.85 ± 1.73 15.47 ± 1.56 −0.39 [−0.702; −0.072] 0.011 0.23 15.70 ± 1.53 −0.15 [−0.463; 0.268] 0.764 0.09
Stiffness (N/m) 286.09 ± 39.19 272.18 ± 36.30 −13.91 [−19.417; −8.401] 0.001 0.37 279 59 ± 38.83 −6.50 [−12.751; −0.249] 0.039 0.17
Relaxation (m/s) 18.98 ± 2.64 19.76 ± 2.81 0.78 [0.381; 1.180] 0.001 0.29 19.32 ± 2.70 0.34 [−0.032; 0.714] 0.084 0.13

Semitendinosus
Tone (Hz) 15.23 ± 1.89 15.06 ± 1.71 −0.17 [−0.510; 0.164] 0.638 0.09 15.22 ± 1.69 −0.02 [−0.375; 0.345] 1.000 0.01
Stiffness (N/m) 269.52 ± 51.75 259.80 ±46.03 −9.72 [−18.917; −0.513] 0.035 0.20 259.12 ± 42.83 −10.40 [−20.521; −0.273] 0.042 0.22
Relaxation (m/s) 19.62 ± 4.96 20.35 ± 4.06 0.74 [−0.066; 1.537] 0.083 0.16 20.12 ± 3.35 0.50 [−0.431; 1.440] 0.570 0.12

Control Limbs

Gluteus
Tone (Hz) 10.95 ± 0.93 10.87 ± 0.84 −0.08 [−0.302; 0.138] 1.000 0.09 10.75 ± 0.76 −0.20 [−0.443; 0.052] 0.170 0.24
Stiffness (N/m) 156.74 ± 24.99 154.21 ± 20.49 −2.53 [−9.443; 4.382] 1.000 0.11 150.48 ± 21.33 −6.26 [−13.765; 1.250] 0.134 0.27
Relaxation (m/s) 31.67 ± 3.48 31.72 ± 3.10 0.05 [−0.777; 0.877] 1.000 0.02 31.65 ± 3.11 −0.02 [−0.880; 0.847] 1.000 0.01

Biceps Femoris
Tone (Hz) 15.96 ± 1.78 15.96 ± 1.72 0.00 [−0.306; 0.310] 1.000 0.00 15.72 ± 1.60 −0.24 [−0.544; 0.065] 0.174 0.19
Stiffness (N/m) 289.33 ± 42.27 281.85 ± 42.40 −7.48 [−16.873; 1.903] 0.163 0.18 281.88 ± 36.10 −7.45 [−14.584; −0.325] 0.037 0.20
Relaxation (m/s) 18.86 ± 2.95 19.25 ± 3.18 0.39 [−0.975; 0.194] 0.316 0.13 19.16 ± 2.79 0.30 [−0.169; 0.763] 0.367 0.10

Semitendinosus
Tone (Hz) 15.51 ± 2.13 15.33 ± 1.98 −0.18 [−0.551; 0.200] 0.764 0.09 15.48 ± 2.00 −0.03 [−0.438; −0.371] 1.000 0.02
Stiffness (N/m) 273.11 ± 56.04 265.70 ± 49.10 −7.41 [−18.392; 3.574] 0.307 0.14 266.53 ± 49.04 −6.58 [−17.374; 4.222] 0.418 0.13
Relaxation (m/s) 19.60 ± 4.28 19.83 ± 3.61 0.24 [−0.537; 1.014] 1.000 0.06 19.57 ± 3.83 −0.02 [−0.880; 0.834] 1.000 0.01

Abbreviations: SD, Standard Deviation; CI, Confidence interval; p, p-value; ES, Effect size; Hz, herzius; N/m, Newton/meter; m/s, meter/second.
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Table 3. Intra-group contractile properties analysis.

Variables
T0 T1 Difference T0–T1 T2 Difference T0–T2

Mean ± SD Mean ± SD Mean 95% CI p ES Mean ± SD Mean 95% CI p ES

Experimental Limbs

Gluteus
Tc (ms) 39.85 ± 16.74 43.35 ± 22.32 3.50 [−4.110; 11.112] 0.787 0.18 35.68 ± 12.43 −4.17 [−8.876; 0.536] 0.099 0.28
Dm (mm) 5.41 ± 3.16 4.88 ± 3.14 −0.53 [−1.427; 0.361] 0.443 0.17 4.44 ± 2.86 −0.97 [1.760; 0.178] 0.011 0.32

Biceps Femoris Tc (ms) 34.13 ± 14.29 32.26 ± 12.27 −1.87 [−5.772; 2.034] 0.731 0.14 32.16 ± 14.26 −1.97 [−6.230; 2.298] 0.784 0.14
Dm (mm) 4.71 ± 2.88 4.61 ± 2.72 −0.10 [−0.816; 0.621] 1.000 0.04 4.46 ± 2.84 −0.24 [−0.916; 0.428] 1.000 0.09

Semitendinosus
Tc (ms) 40.32 ± 12.11 38.95 ± 12.40 −1.37 [−4.530; 1.794] 0.875 0.11 40.97 ± 12.05 0.65 [−2.431; 3.734] 1.000 0.05
Dm (mm) 6.70 ± 2.80 6.43 ± 3.08 −0.27 [−0.805; 0.266] 0.663 0.09 6.37 ± 3.11 −0.34 [−0.954; 0.280] 0.554 0.11

Control Limbs

Gluteus
Tc (ms) 44.03 ± 27.19 43.93 ± 25.93 −0.10 [−10.389; 10.186] 1.000 0.00 39.93 ± 16.10 −4.10 [−13.480; 5.284] 0.861 0.28
Dm (mm) 6.24 ± 3.75 5.55 ± 3.50 −0.69 [−1.470; 0.098] 0.106 0.19 5.28 ± 3.32 −0.96 [−1.705; −0.212] 0.007 0.27

Biceps Femoris Tc (ms) 34.63 ± 13.33 32.42 ± 14.17 −2.21 [−6.697; 2.278] 0.692 0.16 35.28 ± 16.85 0.65 [−4.760; 6.058] 1.000 0.04
Dm (mm) 5.12 ± 2.83 4.44 ± 3.07 −0.67 [−1.453; 0.107] 0.113 0.23 4.51 ± 2.62 −0.60 [−1.162; −0.044] 0.030 0.22

Semitendinosus
Tc (ms) 41.36 ± 12.64 41.73 ± 12.05 0.38 [−3.340; 4.094] 1.000 0.03 42.81 ± 10.66 1.45 [−2.465; 5.369] 1.000 0.12
Dm (mm) 6.83 ± 2.86 6.60 ± 2.94 −0.23 [−0.961; 0.507] 1.000 0.08 6.38 ± 3.02 −0.45 [−1.280; 0.377] 0.556 0.15

Abbreviations: SD, Standard Deviation; CI, Confidence interval; p, p-value; ES, Effect size; Tc, Contraction time; Dm, maximal displacement; ms, miliseconds; mm, milimeters.

Table 4. Intra-group mechanosensibility data analysis.

T0 T1 Difference T0–T1 T2 Difference T0–T2

Mean ± SD Mean ± SD Mean 95% CI p ES Mean ± SD Mean 95% CI p ES

Experimental Limb

Gluteus (NPRS 0–10) 1.17 ± 1.83 1.27 ± 1.85 0.11 [−0.160; 0.372] 0.992 0.05 1.21 ± 1.84 0.05 [−0.275; 0.366] 1.000 0.02
Biceps Femoris (NPRS 0–10) 1.02 ± 1.55 0.83 ± 1.63 −0.18 [−0.441; 0.078] 0.269 0.14 0.85 ± 1.56 −0.17 [−0.450; 0.117] 0.461 0.11
Semitendinosus (NPRS 0–10) 1.00 ± 1.36 0.94 ± 1.46 −0.06 [−0.391; 0.270] 1.000 0.04 0.92 ± 1.44 −0.08 [−0.445; 0.293] 1.000 0.06

Control Limb

Gluteus (NPRS 0–10) 1.17 ± 1.67 1.20 ± 1.65 0.03 [−0.182; 0.242] 1.000 0.02 1.17 ± 1.79 −0.00 [−0.276; 0.276] 1.000 0.00
Biceps Femoris (NPRS 0–10) 1.05 ± 1.47 0.91 ± 1.43 −0.14 [−0.354; 0.082] 0.388 0.10 1.05 ± 1.65 −0.00 [−0.286; 0.286] 1.000 0.00
Semitendinosus (NPRS 0–10) 0.88 ± 1.23 0.85 ± 1.37 −0.03 [−0.311; 0.250] 1.000 0.02 0.89 ± 1.30 0.02 [−0.278; 0.308] 1.000 0.01

Abbreviations: SD. Standard Deviation; CI, Confidence interval; p, p-value; ES, Effect size; NPRS, numeric pain rating scale.
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Table 5. Differences in inter-limbs data analysis.

Variable

Difference T0–T1 Difference T0–T2

Experimental Limbs Control Limbs Experimental Limbs Control Limbs

Mean ± SD Mean ± SD p Mean ± SD Mean ± SD p

Gluteus

Tone (Hz) −0.26 ± 1.31 −0.08 ± 0.73 0.283 −0.21 ± 0.60 −0.20 ± 0.82 0.829
Stiffness (N/m) −10.16 ± 32.64 −2.53 ± 22.85 0.048 −9.09 ± 27.69 −6.26 ± 24.82 0.289
Relaxation (m/s) 0.46 ± 4.89 0.05 ± 2.73 0.633 0.08 ± 4.71 −0.02 ± 2.85 0.246

Tc (ms) 3.50 ± 25.16 −0.10 ± 34.01 0.466 −4.17 ± 15.56 −4.10 ± 31.02 0.699
Dm (mm) −0.53 ± 2.95 −0.69 ± 2.59 0.687 −0.97 ± 2.62 −0.96 ± 2.47 0.982 *

MCS (NPRS 0–10) 0.11 ± 0.88 0.03 ± 0.70 0.553 0.05 ± 1.06 −0.00 ± 0.91 0.880

Biceps Femoris

Tone (Hz) −0.39 ± 1.04 −0.00 ± 1.02 0.009 −0.15 ± 1.04 −0.24 ± 1.01 0.960
Stiffness (N/m) −13.91 ± 18.21 −7.48 ± 31.04 0.019 −6.50 ± 20.67 −7.45 ± 23.57 0.909
Relaxation (m/s) 0.78 ± 1.32 0.39 ± 1.93 0.053 0.34 ± 1.23 −0.30 ± 1.54 0.045

Tc (ms) −1.87 ± 12.90 −2.21 ± 14.83 0.546 −1.97 ± 14.10 −0.65 ± 17.88 0.891
Dm (mm) −0.10 ±2.38 −0.67 ± 2.58 0.120 −0.24 ± 2.22 −0.60 ± 1.85 0.134

MCS (NPRS 0–10) −0.18 ± 0.86 −0.14 ± 0.72 0.365 −0.17 ± 0.94 −0.00 ± 0.94 0.534

Semitendinosus

Tone (Hz) −0.17 ± 1.11 −0.18 ± 1.24 0.803 −0.02 ± 1.19 −0.03 ± 1.34 0.766
Stiffness (N/m) −9.72 ± 30.42 −7.41 ± 36.31 0.325 −10.40 ± 33.47 −6.58 ± 35.70 0.263
Relaxation (m/s) 0.74 ± 2.65 0.24 ± 2.56 0.344 0.50 ± 3.09 −0.02 ± 2.83 0.114

Tc (ms) −1.37 ± 10.45 0.38 ± 12.29 0.502 0.65 ± 10.19 1.45 ± 12.95 0.771
Dm (mm) −0.27 ± 1.77 −0.23 ± 2.43 0.690 −0.34 ± 2.04 −0.45 ± 2.74 0.074 *

MCS (NPRS 0–10) −0.06 ± 1.09 −0.03 ± 0.93 0.742 −0.08 ± 1.22 0.02 ± 0.97 0.487

Abbreviations: SD. Standard Deviation; CI, Confidence interval; p, p-value; ES, Effect size; * paried student t test; Tc, Contraction time; Dm,
maximal displacement; Hz, herzius; N/m, Newton/meter; ms, miliseconds; mm, milimeters; MCS, mechanosensitibity; NPRS, numeric
pain rating scale.

4. Discussion

The present study aimed to assess the immediate and 30 min after effects of a single
DF session on viscoelastic and contractile muscle properties and mechanosensibility on
hamstring and gluteus maximus muscles, in athletes with hamstring shortening. Our
results suggest that a single session of the DF generate changes in the tissue viscoelastic
properties, without causing relevant changes in the contractile properties of the muscle.
Furthermore, no changes in mechanosensitivity were observed.

Regarding the viscoelastic properties measured with myotonometry, the results indi-
cate a decrease in the muscular stiffness and tone on biceps femoris for the experimental
limb immediately after the DF treatment, compared to the control limb. In addition, there
was observed a relaxation improvement on biceps femoris immediately after, which was
maintained 30 min after the application of the technique. Immediately, stiffness improve-
ments were also observed on gluteus maximus muscle.

With the results observed in this study, we suggest that the use of DF may be indi-
cated in athletes to normalize neuromuscular response, related to viscoelastic properties,
preserving their performance. In this sense, it should be noted that most of the variables
have a moderate or small effect size. However, the fact that the intervention was only ten
minutes long must be taken into account; we believe that a longer intervention could have
modified these results. Several studies have associated hamstring injury risk with tone and
stiffness increases in athletic population [10,13,29,30]. In this sense, a pre-competition DF
intervention could be applied in cases of muscle stiffness or overload. The results obtained
are in line with previous findings in similar populations using soft tissue mobilization
techniques. A quasi-experimental clinical trial focusing on pre-competitive massage in
athletes on the triceps surae muscle, also found a statistically significant reduction in tone
and stiffness in the experimental [15].

Ikeda et al. [31] conducted a randomized control trial to evaluate the effects of instru-
mental techniques (IASTM) on plantar flexors and Achilles tendons in the ankle joint and
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muscle stiffness, assessed by elastosonogram. In contrast to our results, they found no
change in muscle stiffness after the technique [31]. Nevertheless, the intervention they ap-
plied was based on a compressive tension and shearing to produce a longitudinal traction
force on the compromised tissues around the edges of the instrument, which has an arc
shape. In our opinion, the lack of changes in muscle stiffness could be explained by the
characteristics of the technique and the instrument used. IASTIM may reach shallower
planes than with hooks, which could reach deeper and more precise areas to mobilize
them, transversely. Moreover, other issues that could explain the differences compared
to our intervention is that the treatment lasted half as long (5 min) and it was applied on
subjects without muscle shortening. In a descriptive-analytical study focusing on a single
session of DF on gastrocnemius, improvements in stiffness and relaxation measured by
myotonometry were found in healthy subjects, supporting the findings of the present study.
However, they find a statistically significant increase in contractile properties, whereas
contractile capacities do not appear to be modified in the present study [9].

To the best of our knowledge there are no previous studies evaluating contractile
properties in athletes on hamstring. Our results indicate that there were no statistically
significant differences between experimental and control limb, after the DF treatment.
This finding differs from other studies where soft tissue mobilization techniques are used.
Pérez-Bellmunt et al. [15] applied a pre-competition massage in athletes in order to assess
the neuromuscular function. They found a significant increase in contraction time (Tc)
measured by tensiomyography, suggesting that pre-competition massage could decrease
the activation of this type II of fibers and thus increase the injury risk in high-speed sports.
These differences may be because the massage directly targets the muscle belly, whereas the
DF technique targets the intermuscular septa, applying a mainly transverse mobilization
of the tissue.

Similar results were found by Leite et al. [32] when they evaluated the effects of DF
on the gastrocnemius muscles in a recreational athletes population. They found improve-
ments in the contractile properties of the muscle after DF, compared to the control group
(sham DF). They suggest that the breakdown of adhesions would generate greater muscle
excitability and force production, leading improvements in performance. Nevertheless, an-
other study assessed the DF effects on gastrocnemius by TMG and only found statistically
significant differences increasing the Dm after the application of technique, which was
in line to their findings on tone and stiffness decrease, observed on MMT assessment [9].
The contractile properties by TMG data were also assessed by Macgregor et al. [33]. They
conducted a randomized, crossover design in order to evaluate the neuromuscular effects
of the instrument assist massage, by means of foam roller, on vastus lateralis (VL) and
rectus femoris (RF) in active males. The contractile characteristics of RF were unaffected, as
shown by TMG, although reduced muscle stiffness characteristics and increased contraction
velocity were evident in VL on three days follow up [33].

Differing from other studies, our findings clearly point to that a single session of DF
does not generate changes on the contractile properties of the studied musculature. Thus, it
could be a therapeutic choice to normalize the viscoelastic properties of the hamstring and
gluteus maximus without affecting the contractile properties, maintaining performance in
sport. However, given the variability found in the literature involving the effects of tissue
mobilization techniques on muscle contractile properties, measured by tensiomyography,
we suggest investigating them in isolation. Other measurement tools that do not include
mechanical aspects should be used, as appointed in other studies above [33]. Therefore, we
believe that the results concerning the contractile properties in the present study cannot be
conclusively confirmed.

The present study found a significant reduction in viscoelastic parameters in the
biceps femoris, followed by the gluteus maximus muscle. These results could be due to
an anatomical cause as the long head of the biceps has an anatomical continuity with
the sacrotuberous ligament [34] and this ligament in turn is contiguous with the medial
layer of the thoracolumbar fascia [35]. There is also a continuity between the outer layer
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of the thoracolumbar fascia and the gluteus maximus muscle [36]. There is also a fascial
connection between this gluteus muscle and the proximal end of the biceps femoris [37].
Since these connections are produced by fascial tissue and not by muscle, it could explain
why only changes in the viscoleastic parameters (myometry) and not in the contractile
properties (tensiography) were observed.

The results obtained in the mechanosensitivity assessment indicates no statistically
significant differences in the mechanosensibility applied to the different points assessed.
These results are consistent with a recent systematic review that included three studies
examining changes in lower extremity pain in healthy subjects undergoing IASTM [38].
Although our participants experienced muscle shortening, this condition is not associated
with pain. As the baseline, baseline data showed very low values on the NRS scale it could
explain the lack of improvements in mechanosensibility.

However, it should be noted that after the DF intervention, there was also no increase
in tissue tenderness, as it has been reported previously in other IASTMs or manual ther-
apy techniques aimed at normalizing the viscoelastic properties of tissue, such as deep
transverse massage or dry needling [39].

Limitations

This study has some limitations that could affect the generalizability of our results.
Firstly, even though the effects were assessed 30 min after the application of the technique,
there was no long-term follow-up. Secondly, in order to avoid external contamination of the
outcomes assessed, only the effect of a single DF session was evaluated. Thus, we cannot
know the cumulative effect of the technique, as it is usually clinically applied. Therefore,
it is possible that the changes observed are minimal. Furthermore, we did not take into
account the training cycle of the athletes; including those who were in the same phase (out
or middle season) would have allowed us to obtain a more homogeneous sample. Also,
unlike other clinical trials, the technique has not been applied as simulated, so we were
not able to control for the possible placebo effect compared to the control limb. The skin
stimulation by simulated DF is more superficial but has shown some beneficial effects in
patients. Although it was not the main objective of the study, it would be interesting to
evaluate its effect in comparison with the real technique. Finally, being an intra subject
study allows a greater homogeneity of the groups, but we cannot discard a central effect
involving effects on both limbs.

5. Conclusions

A single session of diacutaneous fibrolysis produces immediate improvements in the
viscoelastic muscle properties (stiffness and tone) of the biceps femoris and Gluteus max-
imus. There were also smart changes on the contractile properties of the gluteus maximus
and biceps femoris. There were no changes on contractile properties on semitendinosus.
No effect was found on the mechanosensitivity of the posterior chain muscles in athletes
with hamstring shortening.
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