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Abstract: Surface topography and physical-chemical properties usually play a key-role in both os-
seointegration improvement and bacterial colonization reduction over the surface of dental implants.
The aim of this study is to compare the chemical and bacteriological behavior of two different acid
passivation surface treatments on titanium c.p. grade 3 used for dental implant manufacturing.
Surface roughness was evaluated using White Light Interferometry (WLI) in order to determine
different roughness parameters such as average roughness (Sa), the spacing parameter (Sm) and the
hybrid parameter of surface index area (SIA). Contact angle (CA) and surface free energy (SFE) were
evaluated in order to establish the surface wettability of the different groups of samples. Titanium
ion-release from the different samples was also been analyzed in Hank’s solution medium at 37 ◦C
by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) at different immersion times.
Bacterial viability adhesion assays were done using S. sanguinis (CECT 480, Spain) as a bacterial strain
model of primary colonizer in oral biofilm formation. The bacteria attachment and morphology on
Ti surfaces were determined using a live/dead staining method after 4 h of incubation and further
analyzed by scanning electron microscope (SEM). Acid passivation surface treatments produced a
statistically-significant (p < 0.05) roughness increase in all the evaluated parameters (Sa, Sm, SAI). The
treatment with citric acid decreased the static contact angle (CA) and caused an increase in surface
free energy (SFE) with a high polarization and oxidizing character. These physical-chemical surface
characteristics obtained by means of citric acid passivation caused the bactericidal behavior as it has
been proved in bacterial studies.

Keywords: passivation; Ti cp; dental implants; titanium ion release; oxide thickness; surface rough-
ness; static contact angle (CA); surface free energy (SFE); bacterial adhesion; citric acid passivation

1. Introduction

Surface topography and physical-chemical properties play a very important role to
improve osseointegration and to reduce bacterial colonization. In order to enhance the
implant–bone interface and its clinical performance, we have different techniques like
grid-blasting, acid-etched, porosity by sintering, oxidized, plasma-sprayed, apatite-coated
treatments, as well as a combination of these procedures [1–8]. Treatments aiming at the
decrease of bacterial impacts such as the application of nanosilver particles, biofunction-

Coatings 2021, 11, 214. https://doi.org/10.3390/coatings11020214 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://orcid.org/0000-0002-1904-8667
https://orcid.org/0000-0003-3494-1426
https://orcid.org/0000-0002-0823-2303
https://orcid.org/0000-0002-6824-1412
https://doi.org/10.3390/coatings11020214
https://doi.org/10.3390/coatings11020214
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11020214
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/2079-6412/11/2/214?type=check_update&version=3


Coatings 2021, 11, 214 2 of 13

alization with peptides or oxidizer agents with antibacterial character, have also been
studied [9–14].

The surface characteristics of a dental implant, include its chemistry, wettability,
roughness, charge, energy, zero potential, crystallinity, the nature and thickness of its
oxide layer as well as surface residual stresses, influence on the osseointegration and its
microbiology behavior. The optimization of these properties is the key to the success
of the titanium dental implant [15–20] Anodisation is an oxidation reaction obtained by
electrochemical method or by chemical reaction to promote the increase of the thickness of
protective layers. Several studies showed that an artificial increase of the oxide produces
stronger and more effective osseointegration and also showed an important increase in
the corrosion resistance [1,2,8,9]. The role of titanium oxide and the physico-chemical
characteristics of the surface remain poorly understood.

Implants and prostheses based on titanium are generally acid etched after surface
treatment for passivation. This treatment serves to increase the thickness of the oxide
layer, increasing the corrosion resistance of the galvanic couples with the metal of the
abutment as well as to exert an integral cleaning on the titanium surface. This treatment
for many implants is performed with hydrochloric acid as it is less aggressive than sulfuric
acid and gives good results. However, Htet et al. [21] demonstrated that citric acid had
a bactericide character using laser treatment. The titanium bur with citric acid group
exhibited statistically significantly greater improvement in vertical bone height than the
Er:YAG laser group and significantly better bone-to-implant contact than the photodynamic
therapy (PDT) group and the bur-alone group. The authors demonstrated that the chemical
treatment with citric acid proved to be the most effective treatment for disinfection of the
anodized implant surface.

Several antimicrobial agents were tested but there is no consensus in relation to
the chemotherapeutic agent to optimize the decontamination and the inhibition of the
bacteria adhesion. The objectives of this study were to evaluate different surface properties:
thickness of the passivated film, roughness, contact angle, surface energy, titanium ion
release by citric acid anodization and their effect on the microbial effect on titanium
dental implants.

2. Materials and Methods
2.1. Materials

Five different series of 5 mm in diameter and 2 mm thick flat disks of commercially
pure (CP) titanium Grade 2 (KLEIN SA, Bienne, Switzerland) provided by SOADCO
(Escaldes Engordany, Andorra) were used. The chemical products were purchased in
Sigma-Aldrich (St. Louis, MO, USA).

2.2. Anodization Treatment

The treatments applied to the titanium samples presented four stages: grid-blasting,
cleaning, passivation and sterilisation (Table 1). Grid-blasting was carried out with a
blasting machine (MPA-5, Barcelona, Spain) at 0.25 MPa of pressure during the time
required for saturation of the roughness of the samples. The saturation was determined
using the ALMEN method [22].

Table 1. Summary of the titanium sample treatments.

Sample Treatment

Ti-Control Ti c.p. grit blasted with Al2O3-particles.
Cleaning Sonication and washings NaCl, distilled water, PBS

HCl ac. Anodizated Control with anodization for 15 s with HCl 1 M.
Citric ac. Anodizated Control with anodization for 15 s with Citric acid 1 M.

Sterilization Temperature 121 ◦C for 30 min
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After blasting, the samples were cleaned following a standard sequential protocol:
(1) sonication in acetone, 15min; (2) 3 × 3 h washings in 1,5 M NaCl; (3) 3 × 3 h wash-
ings in 0,15 M NaCl; (4) 3 × 3 h washings in distilled water; (5) 3 × 3 h washings in
phosphate buffered saline (PBS) pH 7,4. Finally, all samples were steam-sterilized by
autoclave at 121 ◦C for 30 min using an autoclave SELECTA model Sterilmax (SELECTA,
Barcelona, Spain).

2.3. Observation by Focused Ion Beam-Scanning Electron Microscope (FIB-SEM) and
Transmission Electron Microscope (TEM) of the Passivated Films

The cutting of the cross section of the Ti disk surface was made with the FIB-SEM
electronic microscope model Neon40 (Zeiss, Jena, Germany), by means of a platinum layer
on the surface to prevent damage to the surface when cutting. The obtained lamella had an
approximate thickness of 200 nm.

By means of the TEM, the thickness of the passivation layer was accurately measured.
A JEOL 2011 microscope was used, at 200 kV, with an Ultrascan cat camera (CCD cat 895
USC 4000). For the image analysis, 5 images of 400,000 magnification were taken and the
passivate layer thickness was determined by Image J.

2.4. Interferometric Microscopy

Surface roughness was evaluated by using a white light interferometer microscope
Wyko model NT1100 (IM, Wyko, Veeco, Tuxon, AZ, USA) in vertical scanning interfer-
ometry mode (VSI). Roughness data was analyzed withWyko Vision 4.10 software (Veeco
Instruments, Plainview, NY, USA). The measurements were made in triplicates to charac-
terize the amplitude parameter Sa (average roughness), the spacing parameter Sm (the
mean spacing) and the hybrid parameter index area SAIndex (real surface area/nominal
surface area). They were described in correlation with the biological response

2.5. Wettability and Surface Free Energy

Contact angle (CA) and surface free energy (SFE) were evaluated in order to establish
the surface wettability of the different groups of samples.

Static contact angles were measured with two different reference liquids, ultra-distilled
water (WA) Milli-Q grade (Millipore Milli-Q, Merck Millipore Corporation, Darmstadt,
Germany) and di-iodomethane (DIIO) (Sigma Aldrich, St. Louis, MO, USA), as polar and
non-polar liquids, respectively.

The contact angle of liquids on surfaces was measured using a contact angle ana-
lyzer equipment (Contact Angle System OCA15 plus; Dataphysics instrument Company,
Filderstadt, Germany) by using the traditional sessile drop measuring method.

For CA measurements, 3 µL of liquid drops was placed on the surface of a flat disk-
shaped samples with plane-parallel faces. Liquid droplets were backlighted by LEDs
through ground glass and CA were measured within 3s after the settlement of the droplets,
capturing the drop image by a video camera and analyzing it by using the SCA20 software
(Dataphysics instrument Company, Filderstadt, Germany).

At least one CA measurement was acquired on the surface from 5 different samples at
room temperature (T = 25 ◦C), with a constant volume drop of 3 µL, dispensed with a dose
rate of 1 µL/min by using a screw-driven precise dosing mechanism, and the mean values
were used for analysis.

The SFE values with its dispersive and polar components for the solid surfaces
(Equation (1)) were estimated using the Owens–Wendt–Rabel–Kaelble (OWRK) model
after CA measurements [23–25],

γS = γd
S + γ

p
S (1)

γL · (1 + cosθ) = 2 · ((γd
L · γd

S)
1/2

+
(

γ
p
L · γ

p
S)

1/2
)
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where γd is due to the interactions arising from induced and dipole–dipole forces (Lon-
don or ”dispersion”), and γp is the ”polar” component arising from interaction between
permanent dipoles [26,27].

2.6. Ion Release

At least five different flat disk-shaped samples (n = 5) of each group of samples (n = 3)
were completely immersed in a glass-containers with Hank’s solution. All sample glass-
holders were tightly sealed to prevent evaporation of the liquid testing solution during the
incubation test conducted in a Memmert incubator oven model BE500 (MEMMERT Gmbh,
Germany). Moreover, all containers were previously acid cleaned by using 2% ultra-pure
nitric solution (Suprapur, Merck, Darmstadt, Germany) and finally rinsed with ultra-
distilled water Milli-Q grade (Millipore Milli-Q, Merck Millipore Corporation, Darmstadt,
Germany) in order to prevent any contamination.

The exposed surface of the samples and the volume of the solution fluid remained
constants during the course of the ion release test, the latest was also kept constant in 5 mL,
based on an extraction medium weight/volume ratio of 0.2 g/mL, according to the ISO
10993-5 Standard specifications [28].

All the 5 mL of solution was extracted at 5 different times in order to both analyze
and quantify the titanium ions released to the liquid medium as a function of time. All
the extracted medium samples were filtered using 0.22 µm filters before diluting in 2%
ultra-pure nitric solution (Suprapur, Merck, Darmstadt, Germany).

Titanium-released quantification was carried out by using high resolution inductively
coupled plasma-mass spectrometry (ICP-MS) using Perkin Elmer Optima 320RL equipment
(Perkin Elmer, Waltham, MA, USA). These measurements were carried out at 5 different
time points (1, 3, 7, 14 and 21 days) of incubation at 37 ◦C. Calibration standards were
prepared by serial dilution containing Ti at 7 different concentrations from 1 ppb to 1 ppm
using elemental stock solutions (NIST). Each solution extract was analyzed in triplicate.

2.7. Bacterial Culture

Bacterial adhesion assays were carried out using the bacterial strain S. sanguinis. S.
sanguinis was chosen as a model of the primary colonizer in biofilm formation and was
obtained from Coleccion Espanola de Cultivos Tipo (CECT 480, Spain). Bacteria were
grown overnight at 37 ◦C in Todd-Hewitt (TH) broth (Scharlab SL, Barcelona, Spain).
The optical density of each bacterial suspension was measured at 600 nm (OD600) and
adjusted to around 0.2, corresponding to a bacterial concentration of 108 colony-forming
unit (CFU)/mL. The assays were performed in static conditions, using three replicates for
each condition. After sterilization with ultraviolet (UV) irradiation for 10 min and washing
twice with PBS, samples were transferred to a 48-well plate and incubated with 40 µL of
S. sanguinis at during 4 h at 37 ◦C. After incubation time, the samples were washed three
times with PBS and 100 µL of LIVE/DEAD BackLight Bacterial Viability Kit (ThermoFisher,
Barcelona, Spain).

The viability of bacteria was measured using a LIVE/DEAD BackLight Bacterial
Viability Kit (ThermoFisher, Barcelona, Spain). The samples were incubated at room
temperature in the dark for 15 min and the attached bacteria were visualized using a Zeiss
LSM 800 confocal microscope (Carl Zeiss, Jena, Germany).

2.8. Statistical Analysis

The statistical analysis was performed with ANOVA software using the multiple
comparison Fisher’s test to determine statistically significant differences between groups
(p < 0.05). Each data point represents mean ± standard deviation (SD) of at least three
independent experiments.
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3. Results

Figure 1 shows the passivation films by means of high-resolution transmission electron
microscopy. These were films obtained in the rough material by means of hydrochloric
acid and citric acid etch.
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Figure 1. Passivation film obtained by acid etching: (a) hydrochloric acid and (b) citric acid.

An important difference in the thickness of the oxide layer can be observed since with
hydrochloric acid it is 1.8 micrometers and for citric acid it is 6.4 nm. This fact is due to
the fact that hydrochloric acid is a very strong acid and therefore the attack on titanium is
much more aggressive than a weak acid like citric acid [28–30].

Interferometric 3D-roughness of the different Ti samples are shown in Table 2. The
differences were quantified by calculating the roughness parameters Sa, Sm and index area.
As shown on Figure 2, the results of the roughness measurements confirmed a statistically-
significant (p < 0.05) increase of the roughness when the samples are etched by acid in both
cases. Hydrochloricacid is more concentrated, consequently the roughness is bigger than
that of citric acid. The same trend is shown by the spacing parameter Sm. The index area
parameter indicates the increase of real area compared to the nominal area of the sample
due to roughness. As expected, the higher roughness leads to a higher index area.

Table 2. Roughness parameters of the titanium treated samples.

Sample Roughness

Sa (µm) Sm (µm) SA Index

Ti-Control 1.36 ± 0.36 15.60 ± 0.82 1.54 ± 0.37
HCl ac. 1.97 ± 0.20 17.53 ± 0.81 1.94 ± 0.47

Citric ac. 1.69 ± 0.27 17.05 ± 0.98 1.74 ± 0.21

The CA and SFE calculation are shown on (Table 3). The grit-blasting treatment
decreased surface wettability, and, therefore, increased the CA. This effect was particularly
pronounced for those surfaces grit-blasted with Al2O3 [2,28]. Results showed the highest
contact angle for the samples treated with hydrochloric acid and the lowest for citric acid
anodization (Figure 3). The control and citric acid treatment do not present significance
statistical differences.
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Figure 2. Roughness parameters: (a) average roughness (Sa) and (b) surface area index (SA Index).

Table 3. Values (mean ± standard deviation) of contact angle of water (WA) and diiodomethane
(DIIO), and the estimated surface energy (Υ) with their polar (ΥP) and dispersive (B3;D) components,
for each surface treatment.

Sample
CA (◦) SFE (mJ/m2)

WA DIIO Υ ΥD ΥP

Ti-Control 85.66 ± 2.67 43.60 ± 1.85 38.16 ± 1.16 35.60 ± 0.82 2.54 ± 0.77
HCl ac. 92.62 ± 2.87 42.66 ± 1.74 38.47 ± 0.90 37.53 ± 0.81 0.79 ± 0.47

Citric ac. 82.08 ± 0.57 39.10 ± 1.89 40.69 ± 0.87 37.45 ± 0.98 3.24 ± 0.21
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Figure 3. Contact angle (CA) results for Di-iodomethane (a) and ultra-distilled water (b), as well as
surface free energy (SFE) results for all groups of samples (c).
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Regarding the dispersive components of SFE, the polar component tends to decrease
when increasing the acid character. There are significant differences between the polar
component of the control surfaces with respect to the anodized samples, and between the
values obtained with hydrochloric acid and citric acid [15–18,29,30].

Titanium ion release can be observed in Figure 4. The analysis of the ion-release
curves presented in Figure 4 shows less titanium released ions in the titanium control
group of samples. This is due to the fact that the acid attack after blasting causes an
increase in surface roughness and the samples treated with hydrochloric and citric acid
have a greater specific surface area and therefore a greater release of ions. As hydrochloric
acid is more aggressive, it produces more roughness, more specific surface area exposed
to the release liquid medium and therefore greater release. The titanium oxide layer is
capable of reducing the release but because it is porous it cannot inhibit the release of ions
to the physiological environment.
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Figure 4. Titanium ion release at different times as a function of surface treatment.

The total amount of bacterial biofilm over the different titanium surfaces is shown
in Table 4. There are statistically significant differences in total bacterial amount when
comparing all groups (p < 0.05). The attachment and viability of S. sanguinis on the
passivated samples was determined using a live/dead staining after 4 h of incubation.
Figure 5 shows the images of live/dead bacteria of control, HCl passivated and citric
passivated. Figure 6 indicates the percentage of surface coverage by live bacteria on
control and passivated samples (HCl, citric acid). On untreated surfaces, a high bacterial
colonization was observed, with a total surface coverage of 68%. In comparison, the area
covered by bacteria was drastically reduced to 26% on citric acid and 52% on hydrochloric
acid (p < 0.05). Interestingly, the citric acid treatment statistically increased the antibacterial
properties of the hydrochloric acid (0.85% of surface coverage vs. 0.47% for HCl and 0.22%
for citric acid).
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Table 4. Number of S. sanguinis bacteria after 4 h and the ratio of S. sanguinis adhered compared to
unpassivated samples.

Sample CFU-S. Sanguinis 4 h Bacterial Adhesion Compared to Ti (%)

Ti-Control 6.31 × 106 ± 9.22 × 105 100
HCl ac. 4.74 × 106 ± 7.52 × 105 34.54 ± 4.52

Citric ac. 1.31 × 106 ± 2.22 × 105 16.2 ± 5.02
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Figure 6. Live/dead staining of S. S. sanguinis on control and passivated samples (HCl, citric acid).
Symbols (*, **, ***) indicate statistical differences between conditions with p < 0.05.

The ratio of bacteria attached to the surface (Table 4) confirmed a significant decrease
with HCl passivated samples compared to Ti (only 34.54% of adhesion). For the citric acid
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passivated samples, the adhesion was slightly reduced compared to hydrochloric acid with
16.02% of adhesion related to control.

4. Discussion

Several in vitro and in vivo studies have reported the influence of dental implant
surface characteristics in biofilm formation. Parameters such as surface roughness, surface
free energy (SFE), wettability and sterilization mode are factors that significantly affect
early colonization and, therefore, biofilm formation and maturation. In general, when the
roughness increases more bacterial adhesions occur. However, the passivation films formed
by titanium oxide reduce colonization due to the oxidizing character of the coats. This fact
was also verified in the studies of bacteria carried out on rough surfaces by sand-blasting
alumina particles on titanium disks, where in one case the entire surface was cleaned
of alumina residues and in another case approximately 8% of the surface was left with
alumina particles. The results were clear that the surfaces with the presence of aluminum
presented less quantity of bacterial colonies [31–34].

In this work we have been able to verify with high resolution roughness equipment
that the acid attacks to obtain passivation layers increase the roughness, that is, in addition
to the roughness obtained by sand-blasting, the acid passivation treatment increases the
roughness. However, this slight increase in roughness does not increase the bacterial
colonization since it is the oxidizing effect of the oxide layer that reduces the adhesion of
the bacteria on the titanium [35–37].

The increase in roughness obtained by the passivation process increases the specific
surface of the titanium, i.e., there is a greater surface in contact with the physiological
environment and therefore the release of ions is higher in the passivated materials. The
barrier effect of the oxide layer (porous) does not inhibit the release of the titanium ions
into the medium [38].

Between the two passivates, the one that has a higher amount of ion release is the
attack with hydrochloric acid since it increases more significantly the roughness with
respect to the discs treated with citric acid.

As found in other works the increase of surface roughness increases the contact
angle [29,30,32]. A high value of contact angle correlates with a low value of surface
free energy, which leads to a hydrophobic surface and, initially, to a lower adhesion of
proteins and subsequently of bacteria. However, the antimicrobial effect of citric acid
is higher than that of the hydrochloric acid. Previous studies showed that this acid is
effective to reduce anaerobic pathogens related to periodontal disease [39–41]. The high
acid concentration and low pH does not reduce the cell compatibility and in consequence
acid citric treatment removes biofilms related to perimplantitis diseases without affecting
the periodontal tissues [41]. The action of the citric acid reduces the pH of extracellular
sites. The acidulation property of the citric acid changes the membrane permeability of
bacteria, varying the hydrogen gradient between intracellular and extracellular sites. In
addition, the citric acid presents an important antioxidant effect which has a fatal effect on
the microbacteria [40–43]. Hydrochloric acid is not as oxidizing although it has a higher
degree of acidity (strong acid) but does not affect bacteria as much as citric acid. Another
important point is that the oxidizing action of citric acid lasts quite a long time and therefore
it is effective in the first stages of osseointegration of the dental implant and in many cases
it can form the biological seal that will prevent bacterial colonization. Once the tests were
finished, the surfaces of the titanium disks were observed by means of scanning electron
microscopy to observe possible pitting produced by electrochemical corrosion. Pitting was
not observed in any of the samples observed, neither for those treated with hydrochloric
acid nor with citric acid.

For the limitation of this study, the ion release tests were performed on titanium
without bacteria. We have assumed only titanium ion was released. However, in fact, the
ICP-MS is an analytical technique to measure the ions and small particles like nanoparticles
in the solutions. Since we have not measured the surface morphology after immersion with
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bacteria, we could not confirm whether the presence of bacteria would cause any elemental
increase besides ion release. This kind of chemical degradation of titanium should be
studied in the future.

5. Conclusions

The passivation of rough titanium with hydrochloric acid and citric acid produces
films of titanium oxide being of greater thickness than those obtained by treatment of
hydrochloric acid, given the higher concentration and strong character of its acidity. In
both cases, passivation causes an increase in surface roughness. The release of ions in
relation to the specific surface obtained is slightly lower since the oxide layer acts as an
obstacle to the release of titanium. The treatment with citric acid decreases the contact
angle and causes an increase in surface energy with a high polarization and oxidizing
character. These physical-chemical characteristics of the surface obtained by means of citric
acid causes the bactericidal behavior as it has been proven in bacterial studies.
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