
Progress in Lipid Research 81 (2021) 101071

Available online 10 November 2020
0163-7827/© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Review 

The return of malonyl-CoA to the brain: Cognition and other stories 

Rut Fadó a,b, Rosalía Rodríguez-Rodríguez a, Núria Casals a,c,* 

a Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, E-08195 Sant Cugat del Vallès, Spain 
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A B S T R A C T   

Nutrients, hormones and the energy sensor AMP-activated protein kinase (AMPK) tightly regulate the intracel
lular levels of the metabolic intermediary malonyl-CoA, which is a precursor of fatty acid synthesis and a 
negative regulator of fatty acid oxidation. In the brain, the involvement of malonyl-CoA in the control of food 
intake and energy homeostasis has been known for decades. However, recent data uncover a new role in 
cognition and brain development. The sensing of malonyl-CoA by carnitine palmitoyltransferase 1 (CPT1) pro
teins regulates a variety of functions, such as the fate of neuronal stem cell precursors, the motility of lysosomes 
in developing axons, the trafficking of glutamate receptors to the neuron surface (necessary for proper synaptic 
function) and the metabolic coupling between astrocytes and neurons. We discuss the relevance of those recent 
findings evidencing how nutrients and metabolic disorders impact cognition. We also enumerate all nutritional 
and hormonal conditions that are known to regulate malonyl-CoA levels in the brain, reflect on protein malo
nylation as a new post-translational modification, and give a reasoned vision of the opportunities and challenges 
that future research in the field could address.   

1. Introduction: an historical perspective 

Malonyl-CoA is the precursor of fatty acid (FA) synthesis and its 
levels fluctuate greatly in response to nutrients and hormones. However, 
malonyl-CoA is not only a metabolic intermediary, it is also an allosteric 
regulator of carnitine palmitoyltransferase 1 (CPT1) enzymes, as was 
first demonstrated in 1977 by McGarry and col. [1]. This crucial finding 
unveiled the mechanism by which the synthesis and degradation of FAs 
are perfectly coordinated in cells, with a special importance in tissues 
such as liver, muscle or adipose tissue. Years later, by experimental 
serendipity, the teams of Lane and Kuhjada evidenced that malonyl-CoA 
accumulation in the hypothalamus resulted in satiety and weight loss 
[2] suggesting a signaling role, in addition to controlling FA metabolism. 
Since then, a great deal of effort has been made to elucidate the role and 
targets of malonyl-CoA in different hypothalamic nuclei in the control of 
food intake and energy homeostasis. 

However, other functions of malonyl-CoA beyond the regulation of 
energy homeostasis have recently emerged in the regulation of brain 

development, cognition abilities and motor function [3–5]. Moreover, it 
cannot be ruled out that malonylation of proteins, a new post
translational mechanism [6], may represent another way by which nu
trients impact brain function. We will discuss how these recent findings 
contribute to the comprehension of the molecular mechanisms that 
drive nutrients’ effects on cognition and neuron function, and we will 
give some guidance on future research in this field. 

2. FA synthesis and oxidation pathways are perfectly 
coordinated by a unique lipid metabolite 

Malonyl-CoA is synthesized by acetyl-CoA carboxylase (ACC) from 
acetyl-CoA, to subsequently generate long-chain FAs by fatty acid syn
thase (FASN) (see Fig 1), or be used to elongate preformed FAs by two- 
carbons units [7]. ACC is an enzyme that is very well regulated, both 
allosterically and by phosphorylation, since it catalyzes the first 
committed and rate-determining step in FA synthesis [8]. There are 2 
different ACC enzymes: ACC1 in the cytosol and ACC2 associated to the 
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outer mitochondrial membrane [9]. Malonyl-CoA is also generated in 
the lumen of the mitochondria by the acetyl-CoA synthetase ACSF3 from 
malonate. However, in this subcellular localization, malonyl-CoA syn
thesis is aimed to detoxify malonate but is not involved in FA synthesis 
[10]. 

One allosteric activator of ACC is citrate. In conditions of nutrient 
abundance, especially high glucose availability, accumulated citrate in 
the mitochondria is shuttled to the cytosol for conversion to acetyl-CoA. 
Cytosolic citrate highly activates ACC fostering the synthesis of FAs to 
store excess nutrients in form of fat [8]. By contrast, palmitoyl-CoA and 
other acyl-CoA behave as allosteric inhibitors. Interestingly, ACC poly
merization into extensive filaments of different conformations stabilizes 
the catalytically competent or incompetent states of the protein [11]. 
Moreover, some proteins such as Mig12 and Spot14 modulate ACC 
polymerization, and in consequence, its activity [12,13]. 

The main kinase that regulates ACC activity is the energy sensor 
AMP-activated protein kinase (AMPK) [14]. ACC is one of the best- 
characterized canonical targets of AMPK. In conditions of energy 
stress (fasting, prolonged exercise, etc.) or in response to hormones 
(glucagon, ghrelin, etc.), AMPK is activated and phosphorylates and 
inactivates ACC, resulting in a decrease of malonyl-CoA levels and FA 
synthesis, leading to significant savings in cell energy expenditure. 
Interestingly, drugs and nutrients can also regulate AMPK and lead to 
changes in malonyl-CoA levels in cells. For instance, metformin (anti
diabetic drug) and resveratrol (a natural polyphenol found in grapes and 
red wine) inhibit ATP synthesis, therefore activating AMPK indirectly by 
increasing AMP levels [14]. 

The levels of malonyl-CoA can also be modulated by malonyl-CoA 
decarboxylase (MCD), the enzyme that catalyzes the conversion of 
malonyl-CoA back to acetyl-CoA (Fig. 1). MCD is mainly regulated by 
genetic expression in response to nutrients and hormonal changes [15]. 

In addition to being the first intermediate in FA biosynthesis, 
malonyl-CoA is the physiological inhibitor of carnitine palmitoyl
transferase 1 (CPT1) enzymes, which regulate the entry of long-chain 
FAs to the mitochondria for beta-oxidation [1]. In this way, only one 
metabolite, whose synthesis and degradation is highly regulated by 
nutritional and hormonal conditions, coordinates the synthesis and the 
oxidation of FAs, meaning that the two pathways are not active at the 
same time, but rather they are segregated in time. Moreover, taking into 
consideration that the glucose-derived metabolite citrate is the main 
allosteric activator of ACC, we can say that malonyl-CoA is at the 
crossroad between glucose and FA metabolic pathways (see Fig. 1), 
which explains the importance of this metabolite in the control of energy 
metabolism. 

3. Malonyl-CoA sensing by CPT1 enzymes 

CPT1 proteins are thought to be the main malonyl-CoA downstream 
effectors in the brain. There are three different CPT1 isoforms: CPT1A, 
with a ubiquitous distribution in the body but highly expressed in the 
liver, kidney and pancreas; CPT1B, mainly expressed in muscle, heart 
and adipose tissue; and CPT1C, exclusively expressed in the brain [16]. 
CPT1A and CPT1C coexist in the brain, though they are chiefly localized 
in different cell types: CPT1C in neurons and CPT1A in astrocytes 
[17,18]. CPT1A and B catalyze the transesterification of long-chain acyl- 
CoA into acyl-carnitines in order to facilitate their entry into the mito
chondrial matrix, and their activity is negatively regulated by malonyl- 
CoA, in order to block FA oxidation (FAO) when FA synthesis is un
derway. CPT1C is the most intriguing isoform since, in contrast to the 
other canonical isoforms, it is an endoplasmic reticulum (ER)-resident 
protein, it has insignificant catalytic activity and it is unable to facilitate 
FAO in cells [19–21]. Interestingly, it maintains the ability to bind 
malonyl-CoA in the physiological range, which led our group and others 
to hypothesize that CPT1C could be a pseudoenzyme with the unique 
role of sensing malonyl-CoA in neurons [16,20,22]. Recently published 
articles have confirmed this hypothesis [3,5,23,24], and unveiled some 
downstream signaling mechanisms, which we will summarize and 
discuss later. 

The crystal structure of CPT1 enzymes is yet to be achieved, but it is 
well known that the three isoforms have a short N-terminal cytosolic 
domain, two transmembrane domains with a short intraluminal loop 
between them, and a long C-terminal cytosolic region that includes the 
catalytic domain and the malonyl-CoA binding site [25] (see Fig. 2 for a 
3D model of CPT1 proteins). Since the N-terminal region has negative or 
positive effects on malonyl-CoA sensitivity and carnitine affinity [26], it 
has been named the regulatory domain. Nuclear magnetic resonance 
(NMR) spectroscopy studies have elucidated the structure of the N-ter
minal regulatory domain of CPT1A and CPT1C. Interestingly, it can 
switch between two alternative conformations, which determines the 
binding of malonyl-CoA to the protein [27,28]. In CPT1C, one of the two 
conformation is destabilized, suggesting a different specific role for this 
isoform. 

On the other hand, CPT1C has an additional 30 residues in the C- 
terminal region, not present in CPT1A or CPT1B (Fig 2), which are 
necessary for the binding to other proteins [3]. Since a high resolution 
proteomic analysis has revealed that CPT1C interacts with a different 
array of ER-resident proteins [29], it is to be expected that changes in 
CPT1C conformation by malonyl-CoA binding would trigger confor
mational changes to its interacting proteins and modulate their function. 
This points to the idea that malonyl-CoA plays a thus far undiscovered 
role in the brain in addition to the regulation of lipid metabolism. 

Fig. 1. Malonyl-CoA coordinates the synthesis and oxidation of fatty 
acids. Malonyl-CoA is the precursor of fatty acid synthesis in the cytosol, and 
behaves as a negative allosteric regulator of CPT1A and CPT1B enzymes, 
therefore regulating the mitochondrial oxidation of long-chain fatty acids. This 
means that the two metabolic pathways, fatty acid synthesis and oxidation, do 
not occur simultaneously. Malonyl-CoA is synthesized by acetyl-CoA carbox
ylase (ACC) from acetyl-CoA, while malonyl-CoA decarboxylase (MCD) cata
lyzes the conversion of malonyl-CoA back to acetyl-CoA. ACC activity is highly 
regulated: upon energy stress or in response to hormones, the energy sensor 
AMPK phosphorylates and inhibits ACC, causing a decrease in malonyl-CoA 
levels. Whereas, under glucose availability, citrate is shuttled out of the mito
chondria to act as an allosteric activator of ACC, resulting in an increase of 
malonyl-CoA. On the other hand, long-chain acyl-CoAs, such as palmitoyl-CoA, 
are inhibitors of ACC. 
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4. Hypothalamic malonyl-CoA as a mediator of feeding behavior 
and peripheral metabolism 

The hypothalamus is a major player maintaining the balance be
tween food intake and energy expenditure. In addition to the classical 
regulation of energy homeostasis by endocrine action, a novel hypo
thalamic regulatory mechanism was identified whereby malonyl-CoA 
acts as a modulator of satiety and energy expenditure. This mecha
nism was first evidenced based on the observation that pharmacological 
inhibitors of FASN (C75 and cerulenin) suppressed food intake and 
produced a substantial body weight loss and adiposity reduction after 
systemic or central administration to obese or lean mice, in a leptin- 
independent manner [2]. Importantly, central simultaneous adminis
tration of 5-tetradecyloxy-2-furoic acid (TOFA), an inhibitor of ACC, 
antagonized the satiating effect of C75. In line with these results, the 
authors proposed a model in which C75 causes an accumulation of hy
pothalamic malonyl-CoA, which in turn acts to downregulate neuro
peptide Y (NPY) synthesis, thereby suppressing food intake. 

The role of malonyl-CoA as a satiating signal was then supported by 
other studies using not only pharmacological strategies [30–34], but 
also nutritional situations and hormonal treatments known to regulate 
malonyl-CoA levels, such as fasting/feeding cycles [30], central glucose 
administration [35], or in response to leptin [35–37] or ghrelin [38,39] 
(Table 1) (Fig. 3). The fact that a decrease in hypothalamic malonyl-CoA 
was sufficient to induce appetite and body weight gain was further 
confirmed by studies overexpressing MCD in the mediobasal hypothal
amus of rodents [40,41]. The importance of the malonyl-CoA pathway 
has also been proposed in relation to human satiety. Patients with a rare 
MCD deficiency show abnormal brain development [42] and some of 
them also have a low appetite, in agreement with the suggested role of 
malonyl-CoA as a satiating signal [43,44]. 

Malonyl-CoA in the hypothalamus has other functions beyond 
regulating feeding behavior. An increase in hypothalamic malonyl-CoA 
levels correlates with increases in peripheral energy expenditure. This 
finding was first described in longitudinal pair-feeding investigations, 
showing that C75-treated obese mice lost more body weight than their 

control counterparts [33]. Supporting this notion, Cha and col. [45,46] 
found that an increase in hypothalamic malonyl-CoA rapidly signals to 
skeletal muscles via the sympathetic nervous system, increasing FAO 
and therefore energy expenditure (Fig. 3). Later, Lopez and col. 
demonstrated that thyroid hormones, through the inhibition of AMPK in 
the ventromedial hypothalamus (VMH), increased hypothalamic 
malonyl-CoA levels, and through the sympathetic nervous system acti
vated brown adipose tissue (BAT) thermogenesis [47] (Fig. 3). 

When evaluating the intracellular signaling mechanisms of malonyl- 
CoA on energy homeostasis, it looks quite clear that the AMPK/ACC 
pathway plays an essential role as an upstream mediator [48,49]. The 
changes in hypothalamic malonyl-CoA led by nutritional or hormonal 
stimuli are tightly coupled with changes in the AMPK/ACC pathway 
[36,50], even in specific hypothalamic nuclei such as the VMH [47,51] 
(Fig. 3). But, what about the cellular target of malonyl-CoA and how is 
its signal transmitted? The group of Rossetti pointed CPT1A as a 
downstream target of malonyl-CoA, since inhibition of CPT1A in the 
hypothalamus of rodents resulted in diminished food intake and hepatic 
glucose production, and body weight attenuation [52–54] (Fig 3). In line 
with this evidence, CPT1A overexpression in the VMH of rats increased 
food intake and body weight [55,56]. However, the downstream 
mechanisms underlying the hypothalamic effect of CPT1A on food 
intake and glucose homeostasis are not well understood. The regulation 
of KATP channels by long chain fatty acyl-CoAs, and the activation of 
FAO leading to the production of reactive oxygen species (ROS) and the 
expression of uncoupling protein 2 (UCP2) have been pointed to as 
potential mechanisms [53,56–59]. The cell type in which CPT1A exerts 
those effects is not clear either. CPT1A expression is higher in astrocytes 
than in neurons [18], and astrocytes are an active component of the 
tripartite synapse and its metabolism is coupled with neuronal activity 
[60]. However, we cannot rule out that CPT1A-mediated regulation of 
FA metabolism in neurons play a signaling role. Selective deletion of 
CPT1A in specific neuronal populations or astrocytes of hypothalamic 
nuclei will shed light on the mechanisms by which CPT1A controls food 
intake and energy homeostasis. 

Since the discovery of the neuron-specific CPT1 isoform in 2002 

Fig. 2. Representation model of CPT1 proteins. CPT1 pro
teins show the following domains: a N-terminal regulatory 
domain, which switches between two different conformations 
depending on malonyl-CoA binding; two transmembrane do
mains that anchor the protein to the outer mitochondrial 
membrane (CPT1A and CPT1B) or to the endoplasmic reticu
lum (CPT1C); the protein is always facing the cytosol; the 
globular core that comprises the catalytic center and the 
malonyl-CoA binding site; and a C-terminal tail of about 30 
residues, which is only present in CPT1C and is the region that 
binds the GluA1 subunit of AMPA receptors.   
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[20], many research groups have proposed and demonstrated that 
CPT1C is a downstream target of malonyl-CoA in the regulation of food 
intake and peripheral energy expenditure. Knock-out (KO) mice of 
CPT1C show a disruption of leptin and ghrelin signaling on feeding 
behavior [61–63], and impaired diet- and leptin-induced brown fat 
thermogenesis, making them more susceptible to become obese under 
high fat feeding [64–67]. Moreover, hypothalamic CPT1C is responsible 
for food preference [23] and fuel selection under fasting conditions [68]. 
The role of CPT1C as a downstream target of malonyl-CoA in the hy
pothalamus was evidenced by the use of a mutated CPT1C isoform un
able to bind malonyl-CoA [24]. Moreover, BAT thermogenesis was not 
triggered by acute AMPK silencing in the VMH of CPT1C KO mice [24]. 
Altogether, CPT1C is revealed as a downstream mediator of the AMPK/ 
ACC axis in the regulation of energy homeostasis. However, the hypo
thalamic downstream effectors of CPT1C are still unknown. In cortical 
neurons, CPT1C regulates the trafficking of α-amino-3-hydroxy-5- 
methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to 
the neuron surface depending on malonyl-CoA levels [3]. AMPA re
ceptors (AMPARs) mediate fast excitatory neurotransmission in the 
central nervous system and are the main determinants of synaptic 
plasticity. Recent findings demonstrate that AMPARs are mediating 
hypothalamic responses to nutritional challenges and to endocrine 
stimuli, such as high fat diet, fasting/refeeding, leptin or the endogenous 
glucagon-like peptide-1 (GLP-1) [69–72]. Since all these nutritional and 

hormonal conditions are associated with fluctuations in hypothalamic 
malonyl-CoA levels (Table 1), it would not be unreasonable to think that 
CPT1C is converting the “malonyl-CoA signal” into changes in excitatory 
neurotransmission through the regulation of AMPAR abundance at the 
synapsis. 

Altogether, strong evidence suggests both CPT1A and CPT1C as 
major effectors of malonyl-CoA regulation of food intake and energy 
homeostasis, although the downstream molecular mechanisms are not 
well understood. 

5. The sensing of malonyl-CoA in cognition and brain 
development 

Despite the extensive role of malonyl-CoA in the control of energy 
homeostasis in the hypothalamus, recent data indicate that malonyl-CoA 
sensing in other brain regions could contribute to the regulation of 
neuronal development and cognitive function by nutrients. A descrip
tion of the physiological processes and molecular mechanisms involved 
is detailed below. 

5.1. Metabolic plasticity in astrocytes 

Astrocytes express mainly the CPT1A isoform even though its 
expression is low compared to other peripheral tissues [18]. In 

Table 1 
Malonyl-CoA fluctuations in the brain  

Stimulus Species Model Effect on each brain region Whole 
brain 

Ref. 

HPT CTX HPC CRB 

Nutrients Glucose Mouse Acute IP injection of glucose (1 g/kg or 4 g/kg of body 
weight; 1 h) in food deprived mice 

↑ - - - - [35] 

Fructose Mouse Acute IP injection of fructose (4 g/kg of body weight; 10 
min) in food deprived mice 

ns - - - - [145] 

Hormones Leptin Mouse Acute ICV administration of leptin (200 ng; 2-3 h) in 
food deprived mice 

↑ - - - - [35] 

Rat Acute ICV administration of leptin (15 μg; 3 h) ↑ 
(ARC)     

[36] 

Mouse Chronic ICV administration of leptin (10 μg) daily for 7 
days in DIO or control mice 

ns - - - - [37] 

Ghrelin Rat Acute ICV administration of ghrelin (3.2 nmoles; 2 h) in 
fed satiated rats 

↓ 
(VMH) 

- - - - [38] 

Rat Acute ICV administration of ghrelin (5 μg; 2 h) in fed 
satiated rats 

↓ - - - - [39] 

T4 thyroid hormone Rat Chronic SC administration for 21 d (100 μg/d) ↑ - - - - [47] 
Diets Fasting Mouse Fasting for 16 h (vs refed 2 h) ↓ - - - - [30] 

Rat Fasting (male and female) for 16 h (vs SD) ↓ ↓ ↓ ↓ - [104] 
Rat Fasting for 24 hours (vs SD) ↓ - - - - [146] 

High fat diet Rat HFD (62.2 %) for 4 weeks + 16 h fasting (vs HCD, 63.5 
%) 

↑ ns ns ns  [147] 

Rat HFD (60 %) for 9 weeks (vs 10 % FD) ns - - - - [37] 
High protein diet Rat HPD (56.5 %) for 4 weeks + 16 h fasting (vs HCD, 63.3 

%) 
↑ ns ns ns - [147] 

Calorie restricted diet Rat 50 % CR for 4 weeks (vs SD) ↑ - - - - [146]) 
Rat 9-18 % CR for 5 weeks (vs SD) ↓ - - - - [148] 

Ketogenic diet Rat 30 % of total calories from ketone bodies - - - - ↑ [113] 
Drugs C75 Mouse Acute ICV administration of C75 (10 μg; 2.5 h) in fasting 

mice 
↑ - - - - [30] 

Tamoxifen Rat Chronic SC administration of tamoxifen (0.5 mg/kg/ 
day) for 5 days 

↑ - - - - [34] 

AICAR Mouse Acute ICV administration of AICAR (6 μg; 2h) ↓ - - - - [41] 
Compound C (AMPK 
inhibitor) 

Rat Acute ICV administration of Compound C (10 μg) in 
fasting rats 

↑ - - - - [39] 

Genetic-based 
approaches 

AMPKα dominant 
negative 

Rat Injection of AMPKα-DN adenoviruses into the VMH ↑ 
(VMH) 

- - - - [47] 

Leptin R mutation Rat Zucker-diabetic fatty (vs Zucker) ↓ ns ns ↑ - [118] 
Leptin R mutation Rat Zucker-fatty (vs Zucker-lean) ns ↓ ↓ ns - 

Behavior Stress Rat Social defeat procedure daily for 5 weeks, which results 
in anorexia 

↑ - - - - [125] 

Hypermetabolic state Pregnancy Rat Female pregnant at day 16-17 of gestation ↑ - - - - [126] 

ARC: arcuate; CBR: cerebellum; CR: caloric restriction; CTX: cortex; DIO: diet-induced obesity; DN: dominant negative; h: hours; HCD: high-carbohydrate diet; HFD: 
high-fat diet; HPD: high-protein diet; HPT: hypothalamus; HPC: hippocampus; ICV: intracerebroventricular; IP: intraperitoneal; ns: not significant; R: receptor; SD: 
standard diet; SC: subcutaneous; VMH: ventromedial hypothalamus; vs: versus. A dash (-) means no data available. 
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astrocytes, CPT1A enhances FAO upon energy stress [73,74] or under 
high neuron activity [75], when the AMPK pathway is activated [76]. 
FAO is aimed at destroying peroxidised FAs delivered by adjoining 
neurons [75], and producing ketone bodies to fuel back neurons 
[77–79]. Although glucose and lactate are the primary energetic sub
strates for the brain, FAO plays a critical role in astrocyte metabolism, 
supporting neuron function and synapse maintenance in the case of 
glucose and lactate depletion, or during neuron hyperactivity. The 
metabolic coupling between neurons and astrocytes is essential for the 
health of the brain. 

5.2. The regulation of cell fate in neural stem/progenitor cells (NSPC) 

In addition to astrocytes, CPT1A is also highly expressed in NSPCs 
[4,18,80]. NSPCs are abundant in the developing brain but are also 
found in the subventricular zone and hippocampal dentate gyrus of the 
mammalian adult brain [81]. It has been recently described that the 
equilibrium between FASN-dependent de novo lipogenesis and CPT1A- 
mediated FAO determines the proliferative or quiescent stage of these 
cells [4,82]. FAO is linked to the maintenance of cell quiescence, while 
the switch to a proliferating state requires the inhibition of FAO and the 
activation of the novo lipogenesis, which will generate complex lipids 
for the formation of new membranes. Therefore, the addition of 
malonyl-CoA to NSPCs, which is both an inhibitor of CPT1A and the 
substrate of the novo lipogenesis, is enough to induce exit from quies
cence and to enhance NSPC proliferation [4]. We can say that malonyl- 
CoA acts as a bioenergetic rheostat of stem cell fate [83]. 

Interestingly, malonyl-CoA regulation of CPT1A in NSPCs is neces
sary for proper neurogenesis both during development and in the 
adulthood [4]. Inborn errors of FAO, which are clinically linked to 
developmental brain disorders, promote NSPC differentiating divisions 
leading to reduced embryonic NSPC pool [84]. Adult neurogenesis is 
involved in cognition and its impairment has been associated with 
psychiatric disorders [81], therefore it cannot be ruled out that defects 
of the malonyl-CoA/CPT1A axis in NSPCs in the adulthood are at the 
base of some neurodegenerative disorders or psychiatric illnesses. 
Interestingly, the administration of an agonist of PPARbeta/delta (a 
transcription factor that upregulates CPT1A in a model of Alzheimer’s 
disease (APP/PS1 mice), ameliorates memory deficits through increased 
FAO in astrocytes and the enhancing of brain neurogenesis [85]. The 
regulation of CPT1A by malonyl-CoA emerges as a key factor for both 
astrocyte and NSPC metabolism. 

It is worth mentioning that even though CPT1A expression in neu
rons is negligible, there is one article demonstrating that CPT1A medi
ates the effects of ghrelin on GABA release in cortical neurons [86]. 
Further studies are necessary to confirm the signaling role of CPT1A in 
neurons. 

5.3. Synaptic strength in neurons 

CPT1C is highly expressed in neurons throughout the adult brain. 
CPT1C expression is low after birth but rapidly increases in cortex, 
hippocampus and cerebellum [87,88]. In the last few months, new 
published data have proved that the sensing of malonyl-CoA by CPT1C 

Fig. 3. Hypothalamic malonyl-CoA as a mediator 
of food intake and energy expenditure. In the hy
pothalamus, malonyl-CoA levels fluctuate in response 
to physiological (e.g., fasting/refeeding and glucose), 
hormonal (e.g., leptin/ghrelin, thyroid hormones T3/ 
T4) or pharmacological (e.g., C75 or cerulenin) 
stimuli. Green and red lettering indicate the induc
tion of malonyl-CoA levels increase and decrease, 
respectively. Hypothalamic malonyl-CoA rises induce 
activation of a satiety signal and energy expenditure 
leading to attenuation of body weight, whereas a 
reduction in malonyl-CoA concentration blunted 
these effects on feeding and energy expenditure 
leading to an increase in body weight. These malonyl- 
CoA fluctuations can be mediated via FAS inhibition 
or instead via AMPK/ACC depending on the stimulus, 
in hypothalamic areas such as the arcuate (ARC), the 
ventromedial hypothalamus (VMH) and the para
ventricular hypothalamus (PVH). Cellular targets 
downstream malonyl-CoA in the hypothalamus are 
CPT1C and CPT1A. CPT1C regulates satiety at the 
mediobasal hypothalamus (a region that integrates 
ARC and VMH), food preference at the PVH, brown 
adipose tissue (BAT) thermogenesis at the VMH, and 
liver and muscle fatty acid oxidation (FAO) at the 
VMH. CPT1C is located in the ER of neurons and does 
not act as an enzyme, but instead interacts and reg
ulates the activity of other neuronal proteins (e.g. 
AMPAR) involved in synaptic neurotransmission. 
CPT1A is the most ubiquitous CPT1 in the body, 
which is expressed in peripheral tissues and the brain, 
particularly in astrocytes. CPT1A in the hypothala
mus regulates food intake and hepatic glucose pro
duction through the regulation of FAO.   
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regulates the vesicular transport of AMPAR and therefore synaptic 
function [3]. 

AMPARs mediate fast excitatory neurotransmission and play a crit
ical role in synaptic strength and plasticity; key features encoding many 
brain functions such as learning and memory [89]. In the adult brain, 
AMPARs are homo- or hetero-tetramers of usually GluA1 and/or GluA2 
subunits. The presence or absence of a given subunit within the receptor 
is determinant of its synaptic properties (such as permeability to Ca2+

ions). A noticeable array of interacting proteins finely regulates the 
subunit ensemble at the ER, the trafficking to the plasma membrane 
(PM), and the synaptic function of AMPARs. CPT1C is one such inter
acting protein [90] and is needed for proper AMPAR subunit synthesis 
[88] and multimerization into functional tetrameters [91]. Moreover, 
CPT1C regulates the trafficking of GluA1- but not GluA2-containing 
AMPARs from the trans-Golgi network (TGN) to the PM depending on 
malonyl-CoA sensing [3]. Interestingly, this effect is exerted at the ER- 
TGN contact sites and through the phosphatidyl-inositol-4-phosphate 
(PI(4)P) phosphatase SAC1, another auxiliary protein of the AMPAR 
complex that also interacts with CPT1C. Under basal conditions, CPT1C 
inhibits SAC1 catalytic activity, allowing PI(4)P accumulation at the 
TGN, a signal necessary for efficient GluA1 vesicular trafficking. How
ever, under low malonyl-CoA induced by glucose depletion, CPT1C 

releases its inhibition over SAC1 resulting in the temporary retention of 
AMPARs at the TGN (Fig. 4). On the other hand, leptin, a hormone that 
increases the synthesis of malonyl-CoA [3,35,36], enhances AMPAR 
trafficking through the malonyl-CoA/CPT1C pathway [3]. These data 
coincide with the cognitive enhancing effects of leptin [92], and the fact 
that leptin resistance (usually found in obese patients) is a predisposition 
factor of cognitive decline [93,94]. 

In summary, CPT1C-sensing of malonyl-CoA determines the abun
dance and composition of AMPARs at the synapsis in response to glucose 
and leptin. It remains to be explored whether other nutrients and hor
mones that regulate malonyl-CoA levels, such as ghrelin, GLP-1 and 
thyroid hormones (see table 1), affect synaptic AMPARs and cognitive 
functions through the malonyl-CoA/CPT1C axis. In line with these re
sults, CPT1C KO mice show diminished AMPAR-mediated neurotrans
mission, impaired dendritic spinogenesis, and learning deficits [17,88]. 
By contrast, CPT1C overexpression in neurons results in increased sei
zures [95], likely due to excessive excitatory transmission. 

5.4. Axon growth 

The sensing of malonyl-CoA by CPT1C plays another key role in 
neurons, during brain development, through the regulation of another 

Fig. 4. Malonyl-CoA sensing in neuronal development and cognition. In astrocytes, AMPK activation by energy stress or enhanced neuronal activity induces a 
CPT1A-mediated enhancement of FAO and ketogenesis in order to supply fuel to neurons (top left circle). At the same time, neurons release toxic fatty acids (FAs) in 
lipid particles that will be internalized by astrocytes for their oxidation. In neural stem progenitor cells (NSPCs), under high malonyl-CoA (MCoA) levels CPT1A- 
dependent fatty acid oxidation (FAO) is downregulated and proliferation is enhanced, while under low malonyl-CoA content, FAO is activated and cells switch 
to a quiescent state (top right circle). In neurons, CPT1C sensing of malonyl-CoA controls synaptic strength and axon growth in response to metabolic challenges, by 
the modulation of SAC1 activity and protrudin function, respectively. On the one hand (bottom left circle), under basal malonyl-CoA levels, CPT1C downregulates 
SAC1 catalytic activity, allowing efficient trafficking of the GluA1-containing AMPA receptors to the plasma membrane (PM), and consequently the enhancement of 
synaptic function. However, under energy stress (low malonyl-CoA levels), CPT1C-dependent inhibition of SAC1 is lifted, causing a decrease in PI(4)P levels at the 
trans-Golgi network (TGN). This results in the retention of AMPAR at the TGN and a temporary decrease in the synaptic strength. On the other hand (bottom right 
circle), in normal energy conditions, CPT1C is bound to malonyl-CoA and enhances the transfer of kinesisn-1 (KIF5) from protrudin to FYCO1, a protein located at the 
surface of late endosomes/lysosomes (LE/Lys). This fact promotes the plus-end transport of LE/Lys, allowing proper axon growth. However, upon energy stress, a 
decrease in malonyl-CoA leads CPT1C to inhibit protrudin function and the blocking of axon growth. 

R. Fadó et al.                                                                                                                                                                                                                                    



Progress in Lipid Research 81 (2021) 101071

7

interacting protein, protrudin [5]. Protrudin is an ER-resident protein 
mainly present in contact sites between the ER and late endosomes/ly
sosomes (LE/Lys) [96]. Its function is to recruit the motor protein 
kinesin-1 and transfer it to LE/Lys in order to favor the anterograde 
transport of these vesicles along the axon, and their posterior fusion to 
the axon tip, facilitating rapid axon growth (Fig. 4). In fact, protrudin 
overexpression in neurons promotes neurite outgrowth and its deletion 
results in the loss of neuron polarization [97]. Under normal conditions, 
CPT1C enhances protrudin function, but under low malonyl-CoA levels, 
CPT1C inhibits it, temporarily pausing axon growth. Interestingly, in 
this model, exogenous malonyl-CoA addition partially rescues the ef
fects of glucose depletion or AMPK activation, demonstrating that 
malonyl-CoA is a “nutritional signal” that regulates the transport of LE/ 
Lys. The role of amino acids and cholesterol in the regulation of LE/Lys 
transport was well known [98–100], but with these latest data, we now 
have a comprehensive view of how nutrients affect LE/Lys motility, 
which may be relevant to other cellular functions beyond axon growth. 

Corticospinal motor neurons have the longest axon of any in the 
body; hence, it is not surprising that impaired axon growth can lead to 
movement disorders. Accordingly, CPT1C KO mice show motor deficits 
such as ataxia, incoordination, and muscle weakness [87]. Moreover, 
the only two heterozygous mutations of CPT1C described in humans are 
associated with hereditary spastic paraplegia [101,102], a neurological 
disorder that affects corticospinal motor neurons and occurs with ataxia, 
spasticity, leg weakness and other neurological symptoms [103]. 

In summary, we can say that malonyl-CoA is a metabolic signal that 
regulates brain development, synaptic function and cognition in 
response to nutrients and hormones. The sensing of malonyl-CoA by 
CPT1A at the mitochondria regulates neurogenesis and the metabolic 
plasticity of astrocytes. By contrast, CPT1C at the contact sites between 
the ER and other organelles (LE/Lys and TGN) is able to transfer the 
malonyl-CoA signal to other proteins involved in the vesicular transport 
in neurons, therefore regulating axon growth and AMPAR-mediated 
synaptic plasticity. Therefore, it is of high relevance to better under
stand which nutritional challenges, hormones, or even behaviors regu
late malonyl-CoA levels in different brain regions and how. 

6. Malonyl-CoA fluctuations in different brain regions 

In addition to the well-documented changes in malonyl-CoA levels in 
the hypothalamus in response to nutrients and hormones, other brain 
regions classically involved in cognition also suffer malonyl-CoA fluc
tuations, though data are scarce (table 1). In the cerebral cortex, hip
pocampus and cerebellum of rats, malonyl-CoA levels greatly decrease 
in response to prolonged fasting (16-24 h), as observed in the hypo
thalamus [104]. We hypothesize that a permanent decrease in brain 
malonyl-CoA can contribute, even in a small part, to the cognitive def
icits associated with severe undernutrition or exhaustive exercise 
[105,106]. In line with this, pharmacological activation of AMPK in 
rodents leads to impairment in synaptic plasticity and memory forma
tion [107–109] and it is associated with neurodegenerative disorders 
such as Alzheimer’s disease [110,111]. By contrast, caloric restriction 
and intermittent fasting have been associated with the amelioration of 
cognitive decline in aging and neurodegenerative diseases [112]. 
Malonyl-CoA levels in those conditions have not been measured but 
some of the healthy effects of dietary restriction have been attributed to 
the increase in circulating ketone bodies [112]. Interestingly, a ketone 
diet (30 % of the calories from a ketone ester supplementation) for 14 
days increases whole brain malonyl-CoA levels in rats and improves 
cognitive performance [113,114]. 

On the other hand, it is well known that high-energy diets and 
obesity also impair cognitive function [115] and predispose people to 
memory loss with age [116,117]. Interestingly, cortical and hippocam
pal malonyl-CoA pools in Zucker-fatty rats are lower compared to lean 
animals [118], suggesting of some kind of association between malonyl- 
CoA levels on those brain regions and cognitive abilities. It would be 

relevant to study malonyl-CoA levels in different brain regions in 
response to other high-caloric diets (Western diets, saturated HFD), and 
in different models of leptin resistance or glucose intolerance, which 
have been said to produce synaptic dysfunction and cognitive decline 
[93,119–121]. Moreover, it is not known whether conditions such as 
hypo- or hyperthyroidism, anorexia, stress, or pregnancy, which effec
tively modify malonyl-CoA levels in the hypothalamus and are associ
ated with cognition alterations [47,122–127], do show malonyl-CoA 
fluctuations in the cortex and hippocampus. 

The phenotypes observed in deficiencies of proteins that synthesize 
or metabolize malonyl-CoA also support the idea that fluctuations of this 
metabolite have an impact on neuronal development and cognition. 
Only a single case with ACC deficiency has been reported so far [128]. 
This patient showed symptoms of myopathy, growth restriction and 
severe brain damage, probably due to the absence of malonyl-CoA 
necessary for FA biosynthesis and the regulation of CPT1 proteins. By 
contrast, several cases of human MCD mutations have been published. 
These patients suffer malonyl aciduria, hypoglycemia and/or cardio
myopathy, and show some neurological signs and symptoms, like 
cortical abnormalities, mental retardation, epileptic seizures, psycho
motor delay and/or spasticity [42–44,129,130]. This suggests that 
excessive malonyl-CoA has a detrimental effect on the development of 
the central nervous system and impairs neurotransmission. Further 
studies are needed to properly demonstrate this. Perhaps, time and tis
sue specific conditional transgenic mouse models of ACC and MCD 
would expand our knowledge in this sense. 

In summary, metabolic stress, such as severe fasting, AMPK hyper
activation, obesity, or leptin resistance, result in a decrease in malonyl- 
CoA levels in different brain regions (hippocampus, cortex and cere
bellum), and these changes are associated with cognitive alterations and 
memory loss with age. Genetic diseases causing the accumulation of 
malonyl-CoA, such as MCD deficiency, also lead to cognitive alterations, 
suggesting that both a long-time depletion or a permanent excess of 
malonyl-CoA can have harmful effects. 

7. Malonylation, a new posttranslational modification of 
proteins 

In recent years, it has been revealed that malonyl-CoA is not only the 
precursor of FA synthesis and the allosteric regulator of CPT1 enzymes; 
it is also the substrate for protein malonylation. 

Protein malonylation is a new posttranslational modification that 
some proteins can undergo in lysine residues when malonyl-CoA levels 
increase [131]. Since malonyl moiety is negatively charged, malonyla
tion triggers a significant conformational change in proteins with 
distinct functional outcomes, usually making them inactive. High 
throughput studies [6,132–134] have detected more than 1800 malo
nylated proteins in human cells. Interestingly, malonylated grade is 
dynamic and has been shown to be increased in MCD-/- human cells, the 
liver of Sirt5-/- mice (SIRT5 is the main enzyme that catalyzes protein 
demalonylation) [133,134], and genetic models of diabetes and obesity 
[135]. Notably, the majority of the malonylated proteins are cytosolic or 
mitochondrial and involved in metabolism [133,134], such as 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) [136] or 
mammalian target of rapamycin (mTOR) [137]. 

It is still not clear whether malonylation is a physiological way to 
regulate the function of proteins, or if it is just a toxicity issue that occurs 
when malonyl-CoA levels increase to excess, such as in drug treatments 
or genetic diseases. Up to now, little is known about the pathophysio
logical role of malonylation in the brain. In fact, brain malonyl-CoA 
levels are low compared to those of peripheral tissues [104]. Future 
research will elucidate whether malonylation of brain proteins can 
contribute to cognitive decline or neurodegenerative disorders. 
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8. Future perspectives 

The regulation of cognitive functions by malonyl-CoA is an incipient 
field that will likely be developed in the near future. Below are some 
research suggestions that in our opinion would be worth pursuing. 

- Current methods used to measure malonyl-CoA levels are based on 
liquid chromatography-mass spectrometry [138], or the biochemical 
cycling method [104], both of which require a high amount of tissue and 
cannot be performed on live cells. Development of cell-specific methods 
will help to dissect malonyl-CoA fluxes in a certain type of neurons or 
astrocytes. Genetic biosensors, in which the intensity of a fluorescent or 
a luminescent reporter protein fluctuates in response to malonyl-CoA 
changes, arise as promising approaches since they can be used in live 
mammalian cells [139,140]. These biosensors take advantage of the 
malonył-CoA binding properties of the transcription factor FapR from 
Bacillus subtillis [141]. The future development of animal models car
rying those biosensors integrated in specific neurons or astrocytes will 
elucidate how different stimuli affect malonyl-CoA levels in individual 
cells. 

- In addition to AMPAR, SAC1 and protrudin, other CPT1C inter
actors have been proposed by high-resolution proteomic analysis [29]. 
The alpha beta hydrolase domain 6 (ABHD6), which catalyzes the 
conversion of 2-arachidonoylglycerol (2-AG) to arachidonic acid and 
glycerol, could be especially relevant. In turn, 2-AG is the endogenous 
ligand of the CB1 and CB2 cannabinoid receptors, and ABHD6 controls 
some of the endocannabinoid-dependent neuronal functions, like long- 
term synaptic plasticity [142]. It would be relevant to know if CPT1C 
modulates ABHD6 activity in the brain in a malonyl-CoA-dependent 
manner, as it does with SAC1 or protrudin. 

- Taking into account that CPT1A and CPT1C are cellular targets of 
the malonyl-CoA satiating signal, the development of malonyl-CoA an
alogs could be a compelling approach for the treatment of obesity. On 
the other hand, since CPT1C is involved in the regulation of excitatory 
neurotransmission, specific CPT1C inhibitors could be postulated for the 
treatment of epileptic seizures, as previously suggested for the AMPK 
activator metformin or the AMPAR antagonists [143,144]. 

9. Conclusions 

Malonyl-CoA, a metabolite that is in the crossroad of glucose and FA 
metabolism, has been revealed to regulate not only food intake and 
energy homeostasis but also other brain functions such as neurogenesis, 
axon growth and synaptic function. Malonyl-CoA levels fluctuate in 
response to nutrients, hormones and are tightly controlled by the master 
energy sensor AMPK [14]. CPT1A and CPT1C are end-targets of 
malonyl-CoA with a different array of ensuing outputs. Upon energy 
stress or high neuronal activity, malonyl-CoA sensing by CPT1A in as
trocytes triggers FAO activation to provide neurons with an alternative 
energetic fuel [77] and to detoxify peroxided FAs [75], allowing the 
normal function of the synapse. In NSPC, the regulation of CPT1A ac
tivity by malonyl-CoA modulates the switch between proliferation and 
quiescence and, in consequence, the neurogenesis in both the embryo 
and the adult brain [4]. By contrast, in neurons, malonyl-CoA sensing is 
mainly performed by CPT1C, which transfers the nutritional and hor
monal signals to its interacting proteins to regulate both the motility of 
LE/Lys and the vesicular transport of AMPARs, thus impacting axon 
growth and synaptic plasticity [3,5]. In conditions of prolonged fasting, 
anorexia, obesity, and some neurodegenerative diseases, malonyl-CoA 
levels in different brain areas are chronically depleted, which can 
contribute to the cognitive deficits observed in those situations. By 
contrast, malonyl-CoA accumulation, such as in MCD deficiency, also 
results in impaired brain development and cognition. 

In summary, the malonyl-CoA signal is key not only in the hypo
thalamus, but throughout the brain. This highlights the importance of 
nutrients, hormones and energy metabolic challenges on brain devel
opment and cognition. A better understanding of the mechanisms 

downstream of malonyl-CoA can give insight into the treatment of the 
cognitive alterations associated with metabolic disorders. 
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Velagapudi VR, et al. Hypothalamic AMPK and fatty acid metabolism mediate 
thyroid regulation of energy balance. Nat. Med. 2010;16:1001–8. https://doi. 
org/10.1038/nm.2207. 
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