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Abstract 
 
In the present study, production of tantalum porous scaffolds using the space holder 

technique was performed. The effect of size and content of sodium chloride particles, used 

as space holder, as well as compacting pressure on foam structure and mechanical 

properties have been investigated. The morphological characterization was carried out by 

means of scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP) and 

micro-CT technique. The relationship between the elastic modulus and yield strength of 

the tantalum porous scaffold and the pore structure was evaluated. Space holder technique 

allows obtaining tantalum open-cell structure (70 % of porosity) and modulus of elasticity 

similar to cancellous bone, with reproducible processability into three-dimensional 

structures and reasonable manufacturing costs. 

 
 

Keywords: Porous Tantalum, tissue engineering, space holder method, powder 
metallurgy 
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1. Introduction 
 

General population still faces significant increase of bone and musculoskeletal problems, 
 

which consequently produces an increasing demand for long term clinical performance of 

a bone replacement implant (Kurtz et al., 2007). Usually, for bone tissue engineering, 

grafting materials are designed with porous structures to facilitate space for bone in- 

growth and vascularisation (Bobyn et al., 1999; Hernández et al., 2002; Ayers et al., 
 

2000). The high porosity and its interconnected structure facilitate transport of body 

fluids, benefit the spread of cells into the implant, and promote proliferation of bone tissue 

by increasing the contact area (Bansiddhi et al., 2008; Karageorgiou and Kaplan, 2005). In 

the literature, different materials such as ceramics (Galois and Mainard, 2004), polymers 
 

(Liu and Ma, 2004; Wua et al., 2014) or metallic scaffolds (Jung el al., 2015; Wielding et 
 

al., 2015) have been proposed as porous implants to be used in bone tissue engineering. 

Ceramics or polymer scaffolds have been studied showing promising bioactive features; 

however, the low strength of polymers as well as brittleness of ceramics are notable 

drawbacks for bone implant applications. 

Currently, metallic scaffolds are the most suitable materials for load-bearing implants due 

to their mechanical properties: the elastic modulus similar to bone minimizes the stress- 

shielding effect (Wua et al., 2014) with high fracture toughness and load impact fractures. 

For that reason, numerous surface coatings and porous designs of commercially pure 
 

titanium, Ti6Al4V or NiTi foams have been developed to improve biological fixation in 

the orthopedic field (Wang et al., 2009; Mediaswanti et al., 2013; Hosseini et al., 2014). 

Although good clinical results have been shown with these materials, they have several 

drawbacks (possible release of toxic ions, low osteoconductivity or low frictional 

characteristics). Further, a metallic scaffold will not form sufficiently strong chemical 

bonds with bone tissue and thus, „loosening‟ of the implant over a long period may 

become a critical problem (Kim et al., 1996; Spoerke and Stupp, 2005). To overcome 

http://www.sciencedirect.com/science/article/pii/S0142961214010746
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these limitations, tantalum has been proposed as a new material for designing porous 

metallic grafts (Balla et al., 2010a, Koutsostathis et al., 2009). Tests in vivo had 

demonstrated no dissolution of the tantalum metal after several weeks of implantation and 

inflammatory reactions in the tissues surrounding tantalum implants were not evident 

(Matsuno et al., 2001). 

Tantalum, a metal of noteworthy interest for biomedical applications, especially in 

orthopaedic and dentistry, has high strength, ductility and corrosion resistance with 

excellent biocompatibility (Kato et al., 2000; Maccauro et al., 2009). Moreover, tantalum 

forms a self-passivating surface oxide layer that leads to the formation of a bone-like 

apatite coating in vivo. This surface allowed excellent bone and fibrous in-growth 

properties that led to a rapid and substantial bone and soft tissue attachment (Levine et al., 

2006; Fernández-Fairén et al., 2012). 

The historical and current use of tantalum in pacemaker electrodes, plates for cranioplasty, 

femoral stems or plates in nerve surgery, makes this material a good candidate for a wide 

variety of implants (Bobyn et al., 1999). Furthermore, studies “in vitro”, showed six times 

higher living cell density, excellent cellular adherence and growth with abundant 

extracellular matrix formation on Ta surfaces than on Ti surfaces (Balla et al., 2010b). 

Jafari SM et al. (2010) demonstrated that tantalum cups presented better results than 

titanium cups in clinical cases presented with severe bone deficiency. Therefore, tantalum 

is gaining attention and has been proposed for designing new porous metallic grafts (Ryan 

et al., 2006). 

Nevertheless, the use of tantalum has been limited because of its high cost and difficult 

processing as it has a high melting point and high affinity for oxygen. Its high density is 

also a drawback which has prevented a larger development of Ta implants. Thus, several 

studies are now focusing either on tantalum thin film formation on other commonly used 
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metallic implants or tantalum porous scaffolds development (Lewis, 2013; Maho et al., 

2012; Zardiackas et al., 2001). 

Metallic scaffolds can be produced in a variety of ways; the choice of the technique 

depends on the requirements of the final application (Ryan et al., 2006). The basic goal of 

the available manufacturing techniques is to produce a micro-architecture in a scaffold that 

is highly porous to allow for cell adhesion, vascularization, nutrient flow and appropriate 

mechanical properties (Lewis, 2013) 

Different methods for the fabrication of metallic scaffolds have been reported including 

conventional techniques such as sintered metal powders, space holder method, gas 

foaming; and advanced technologies like spark plasma sintering, laser-engineered net- 

shaping process (LENS) (Kato et al., 2000; Bandyopadhyay et al., 2009; Balla et al., 

2009) , selective laser sintering (SLS), electron beam melting (EBM), Direct Laser 

Processing (Balla et al., 2010b), and spark-plasma-sintering (SPS) (Angerer et al, 2007). 

One technique successfully used for manufacturing open-cell porous tantalum structures is 

chemical vapor deposition (CVD)/injection (CVI) on an interconnected vitreous carbon 

skeleton. These structures are characterized by a volume porosity of roughly 75–85%, a 

pore size ranging from 400 to 600 μm and with sufficient strength to allow physiological 

load-carrying applications (Bobyn et al., Zardiackas et al., 2001, Sevilla et al., 2007). 

Considering that its high cost is one of the main drawbacks of this technique, the “space 

holder method” has been selected in this work as an alternative method to produce non- 

homogenous porous tantalum samples with an open cell structure. 

Several review articles on scaffold materials and fabrication technologies highlight the 

space holder method as one of the effective methods for the fabrication of metallic 

biomedical scaffolds, owing to its ability to produce a wide range of porosity levels and 

controllable pore geometry in scaffolds (Sing et al., 2010; Banhart, 2001). Type, size and 

morphology of the space-holding particles determine the porous structure and mechanical 



6  

properties of the manufactured structure (Arifvianto and Zhou, 2014). A number of space 

holder materials have been used such as carbamide (CO(NH2)2) (Wenjuan et al., 2009), 

ammonium hydrogen carbonate (NH4HCO3) and sodium chloride (NaCl) (Ye and 

Dunand, 2010; Bansiddhi and Dunand, 2008; Wen et al., 2002). 

Even though there is prolific literature on the use of this method to produce porous 

structures of titanium and titanium alloys (Torres et al., 2012; Pflüger et al., 1980), there 

have been only limited attempts to apply it to produce tantalum structures (Zhou and Zhu, 

2013). The purpose of this work is to analyze the effects of porosity, size of NaCl holding- 

space particles, and compaction pressure on the morphological and mechanical properties 

of open cell tantalum structures produced using the space holder technique. 

 
 
2. Materials and methods 

 
2.1. Sample preparation 

 
Scaffold fabrication with the space holder method relies on temporary particles added to 

metallic matrix powder (space holding particles) that act as a pore former. Figure 1 

schematically shows that four processing steps are involved: mixing of metal matrix 

powder and space-holding particles, compaction of powders materials, removal of space- 

holding particles and sintering of porous green compact. The process has been described 

on a recent patent developed by our research group (Rupérez et al., 2012). 

As a space holder, sodium chloride particles have been selected in order to minimize 

undesirable reactions between matrix powder (Ta) and space-holding particles as well as 

for their biocompatibility and non-cytotoxicity properties. 

Elemental metal powders of Ta (Alfa Aesar, Puratronic 99,97%) and particles of NaCl 

(Panreac Química S.A.U., Spain, purity > 99.5) were weighed to get a porosity of 60-80% 

vol. For a given porosity and from tantalum and sodium chloride density (ρTa  and ρNaCl 
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respectively), the mass of each component (mTa, mNaCl) required to make the blends was 
 

calculated according to Equation [1]:  
 

[1] 
 
 
 
 
 
 

 
 

Figure 1 Outline of space-holder process 
 
 
In this paper we have evaluated morphological and mechanical properties of tantalum 

porous structures with 60, 70 and 80% of porosity and compacted at 350 and 450 MPa. 

Given that size of space-holder particles will define the final pore size, the degree of pore 

interconnectivity and thus the final mechanical properties of the Ta scaffold, two NaCl 

particles size ranges were studied (S, small:100-397μm and L, large: 397-940μm). Three 

space holder blends were tested: 100% of large particles (0:100), 50% of small and big 

size particles respectively (50:50) and samples with higher percentages of smaller size 

particles (70:30). Table 1 shows the different test conditions that were performed. 

The mixing of Ta powder and NaCl particles was carried out with a mixer (SPEX 

SamplePrep 8000-series) using ethanol as a binder. Subsequently, uniaxial die compaction 

was performed with the aid of a pair of punches that moved uniaxially through a die filled 

with granular materials using a servo-hydraulic testing machine (MTS-Bionix, USA). 
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Cylindrical specimens were compacted to 7mm in diameter and 9 mm in length at two 

compaction pressures of 350 MPa and 450 MPa. 

Table 1. Volume fraction of space-holding particles 
with range sizes studied. (S:100-397μm and L: 397- 
940μm). 

 
Sample 

Ref. 
%vol. 
NaCl 

Particle size NaCl (%) ratio 
S (100-397)µm: L (397-940)µm 

60(0:100) 60 0:100 
60(50:50) 60 50:50 
60(70:30) 60 70:30 
70(0:100) 70 0:100 
70(50:50) 70 50:50 
70(70:30) 70 70:30 
80(0:100) 80 0:100 
80(50:50) 80 50:50 
80(70:30) 80 70:30 

 

In order to ensure a complete removal of space-holding particles and a quick dissolution 

process, water at 60ºC was chosen as the leaching medium. As any reaction between 

decomposed space-holding particles and the scaffold framework material may negatively 

impact on the mechanical properties of the scaffold, the total NaCl dissolution was assessed 

by means of electric conductivity measurements of the waste water. 

The sintering process was performed at 1500ºC under vacuum conditions in a tubular 
 

furnace (Carbolite, Horizontal vacuum tube furnace) for two hours. 
 
 
 
2.2. Structural characterization of the sintered scaffolds 

 
The morphological characterization of tantalum powders and NaCl particles were carried 

out by means of scanning electron microscopy (SEM; JEOL 6400 JSM). The size 

distribution, mean size and percentages ratios of NaCl and tantalum particles were 

characterized by laser diffraction technique (Beckman Coulter LS Particle Size Analyzer). 
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Porosity of sintered tantalum structures (open cells), the pore size distribution and its 

isotropy were characterized by means of mercury intrusion porosimetry (MIP, 

Micromeritics' AutoPore IV 9500), metallographic examination with a scanning electron 

microscope (JEOL 6400 JSM) and micro-CT. 

The three dimensional structure of the sintered Tantalum specimens was determined using 

a Microcomputed tomographer (µ-CT, HMX-XT 225, X-tek system, United Kingdom) at 

190 kV and 330 µA. A total of 720 projections and 4 frames per projection were acquired. 

The volumetric reconstruction with the microradiographs was performed using the CT Pro 

3D (Nikon Metrology, Brighton, MI, USA). The reconstructed volume was then analyzed 

using VG Studio Max (Version 2.1.3, 64bit, Volume Graphics, Charlotte, NC, USA). 

 
 

2.3. Mechanical characterization of sintered scaffolds 
 

Compression tests were performed according to ASTM F 451 standard. Five specimens of 

each material were tested in compression at a cross-head speed of 10 mm/min. Load 

versus extension was continuously monitored and recorded. These mechanical tests were 

carried out using a servo-hydraulic testing machine (MTS-Bionix, USA). Assays were 

performed with cylindrical samples of 7 mm in diameter and 9 mm in length. 

 
 
3. Results and discussion 

 
3.1 Characterization of tantalum powder and space-holder NaCl particles 

 
SEM micrographs show the morphology of the tantalum matrix powder and the space- 

holder particles (Fig. 2a and 3a). It is clearly shown that Ta powder presented an irregular 

shape whereas the NaCl particles had a typical cuboid shape. 

Figure 2b, 3b and 3c present the size particles distribution, measured by means of laser 

diffraction technique, for the raw tantalum powder as well as for the two sieved NaCl 

samples studied. For the tantalum powder, 95% of the particles had a size smaller than 
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65.6μm with a mean size of 30.85 ± 18.76μm. In the case of space holder, the mean 

particle size were 240.5 ± 86.5μm for the S (small) size range and 541.7± 146.4μm for the 

B (Big) size range. 

 

  
 
Figure 2 Particles of tantalum powders (Alfa Aesar, Puratronic), a) SEM image and b) Ta 
particles size distribution analyzed by laser diffraction technique. 

 

 
 

Figure 3 NaCl space holder particles, a) SEM image, b) and c) particles size distribution 
analyzed by laser diffraction technique in range 100-397 μm and 397-940 μm respectively. 

 
 
The properties of a sintered scaffold and its densification during sintering depend on the 

sizes of the matrix powder particles (Arifvianto and Zhou, 2014). Unfortunately, there are 

no data available about the optimal size range and morphology of Ta powder for the 

production of scaffolds. Nevertheless, for titanium foams, it is reported that angular matrix 

powder particles led to a higher green strength of compact (Tuncer et al., 2011) keeping its 

structure during the removal of space-holding particles and provide higher porosity and 

larger pore sizes than spherical powder particles (Álvarez and Nakajima, 2009). Previous 
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studies for Ta scaffolds have shown that tantalum powders having sizes bigger than 20 μm 

resulted in scaffold frameworks with voids and sintering necks (Rupérez et al., 2012). 

 
 
3.2.- Microstructural characterization of sintered tantalum scaffolds 

 

One of the main problems of the space holder method could be the insufficient green 
 

strength of the samples after removal of the NaCl particles. Open cell structures with 
 

porosity greater than 75% should be handled with care in order to avoid the risk of 
 

damaging its structural integrity. 
 
Figure 4 shows a porous tantalum cylinder compacted at 350 MPa and sintered at 1.500ºC 

with 70% of porosity. An interconnected porous structure with good integrity is clearly 

shown. 

 

 
 

 
Figure  4  Sintered  porous tantalum cylinder with 70% of porosity, 
compacted at 350 MPa and sintered at 1.500ºC. 

 
The percentage of interconnected macro-pores and the mean interconnected size (μm) 

were carried out by means of MIP technique in all cases (Tables 2-4). The results showed 

that samples with theoretical porosity of 60% presented lower values of porosity, 

particularly when larger particle sizes were used (0:100). In this case, the experimental 

porosity values ranged between 35-62 %. 
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Table 2 Porosity and pore size entrance in foams with 60% vol. space holder measured by 
MIP technique. 

 
Sample 

Ref. 
Compactation 

pressure 
(MPa) 

 Open  Pore size 
entrance 
(μm) 

Porosity 
% 

 
60(0:100) 

350 35.0 ± 2.1 43.56 ± 4.07 

450 38,6 ± 3.7 40,03 ± 4.81 
 
60(50:50) 

350 55,7 ± 5.6 44,98 ± 3.13 

450 61,8 ± 4.3 44,99 ± 2.86 
 
60(70:30) 

350 52,2 ± 3.7 44,99 ± 4.77 

450 55.8 ± 2.6 51,37 ± 3.92 
 

Table 3 Porosity and pore size entrance in foams with 70% vol. space holder measured by 
MIP technique. 

 
 

Sample 
Ref. 

Compactation 
pressure 

(MPa) 

 Open  Pore size 
entrance 
(μm) 

Porosity 
% 

 
70(0:100) 

350 62,4 ± 2.4 89 ± 6.05 

450 63,7 ± 1.8 87,2 ± 5.96 
 
70(50:50) 

350 71,0 ± 2.4 76,05 ± 5.41 

450 68,9 ± 3.6 76,18 ± 3.18 
 
70(70:30) 

350 70,2 ± 2,0 60,32 ± 4.89 

450 71,4 ± 1.7 51,36 ± 6.34 
 
Table 4 Porosity and pore size entrance in foams with 80% vol. space holder measured by 
MIP technique. 
. 

 
Sample 

Ref. 
Compactation 

pressure 
(MPa) 

 Open  Pore size 
entrance 
(μm) 

Porosity 
% 

 
80(0:100) 

350 78,0 ± 1.5 103,23 ± 10.92 

450 78,4 ± 2.0 120,01 ± 12.08 
 
80(50:50) 

350 79,0 ± 3.1 76,02 ± 5.97 

450 82,6 ± 2.2 79 ± 4.71 
 
80(70:30) 

350 81,2 ± 2.5 69 ± 6.04 

450 81,0 ± 1.9 75,91 ± 7,23 
 
 
Considering that the initial ratios Ta/NaCl mixtures, prior to compaction, were correct 

(confirmed  by laser  diffraction  analysis)  and  that  the  MIP  technique  is  restricted  to 
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measuring the interconnected porosity on the cylinder surface, it could be assumed that 

part of the pores are not interconnected (close cells). If so, the close cells are most likely 

located in the core of the porous sample. For samples with low porosity, using bigger size 

particles leads to a higher probability to find isolated particles leading to structures with 
 

lower interconnected porosity. 
 

Furthermore, it is observed that the pore size entrance is, practically, independent of the 
 

compaction  pressure  used  (350  and  450MPa).  Probably,  this  is  valid  as  long as  the 
 

compaction pressures used cannot break the NaCl particles. Regarding the effect of NaCl 
 

particle size, the pore size entrance increases when the NaCl particles are bigger (see 
 

tables 3 and 4, i.e 0:100). This makes sense because if the particle size is greater, the 
 

contact area between them will be bigger leading to a greater pore size entrance. This is 
 

valid for the porosities range between 70 and 80%, in which all the porosity is, practically, 
 

open. However, for lower porosity (Table 2), this relationship is not clear, probably, due to 
 

there are isolated pores not interconnected. 
 

It  is  possible  to  obtain  porosities  slightly  higher  than  the  theoretical  values.  In  the 
 

theoretical calculation of the weights of tantalum and NaCl necessary to achieve a given 
 

porosity, it has not been taken into account the microporosity present between tantalum 
 

particles  after  the  sintering  process.  Moreover,  for  the  sintering  temperature  used 
 

(1.500ºC), the shrinkage is small, approximately, less than 3%. 
 
The analysis of Ta porous samples by SEM (Figure 5) corroborated the MIP results as 

they showed some non-interconnected pores in samples with porosities lower than 60% 

(Figure  5a-b).  However,  results  from  samples  70(50:50),  70(70:30),  80(0:100),  80(50:50)   and 

80(70:30) show mainly interconnected pores as the measured porosity corresponded to the 
 

percentage of NaCl particles used, that is, the theoretical values of porosity (Tables 2-4). 

Nevertheless, for bigger size NaCl particles (70(0:100)), the presence of a small proportion 

of closed pores inside the scaffold led to a slight decrease of porosity measured by MIP. 
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Figure 5  Porous structure of a cross section of cylindrical Ta samples: a) 
and b) 60% porosity, c) and d) 70% porosity, e) and f) 80% porosity 

 
 
The µ-CT images of the sintered Ta scaffolds also demonstrated that the porosity among 

the different groups was mostly, if not completely, interconnected (attached video). This 

is better visualized on the the extrated porous stuctures (yellow colored images); i.e., the 

negative images of the reconstructed structures (Figure 6). 

It appears that the space holder method was suitable for producing open-cell structures 

above 70%vol. of porosity, according to all these experimental results. The experimental 

values of porosity were in agreement with the theoretical values calculated with equation 
 

[1] and thus,contraction was hardly observed in the sintered samples. Moreover, the use of 
 
mixtures of NaCl with smaller particle size promoted the formation of interconnected 
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pores for samples with low porosity, as for example in 60(50:50). In all cases, the of macro- 

pore interconnected size increased when the space-holding particle sizes were larger, in 

accordance with Arifvianto and Zhou (2014). 

 
 

 
 
Figure 6. Micro-tomographic images of sintered Ta (70% of porosity). a) and d) 0:100, b) 
and e) 50:50, c) and f) 70:30. 3D images in yellow color are the porous structures 
extracted (negative image) from the corresponding Ta scaffolds (gray). 

 
 
It is well known that open pores are built up from coalesced space-holding particles as a 

consequence of the compaction process, while closed pores are formed from isolated 

space-holding particles in the mixture. This study revealed that the transition from closed 

or isolated pores to interconnected pores occurred when the total porosity of the scaffolds 

reached 70%. 

 
3.3.- Mechanical characterization of sintered tantalum scaffolds. 

 

The elastic modulus and the yield strength of sintered samples in terms of porosity, space 

holder size distribution and pressure compaction were assessed by compression tests. 

From the graphs obtained the behavior of  Tantalum porous structures in the elastic region 
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might be highlighted. Figure 7 shows the stress-strain curve of a 60(0:100) sample 

compacted at 350 MPa. 

 
As shown in the graph for stresses below the yield strength, an increase in the slope 

occured. This behavior was observed for most of the tested specimens. The change in 

Young‟s modulus with the increasing applied stress was probably due to the heterogeneity 

in the pore distribution of the scaffold. Others have described this same response in tensile 

tests of open cell nickel and copper foams (Ochiai et al., 2010). Ashby emphasized in 

Metal Foam: A Design Guide (Ashby et al., 2000) that the slope of the initial loading 

stress-strain graph of metal foams in uniaxial tension and compression tests is lower than 

that of the unloading curve. Thus, it is more accurate measuring the Young modulus when 

the specimen is unloaded just before the stress reaches the yield strength. 
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Figure 7 Stress-strain curve of compression test for a Ta 
sample with 60% porosity, large NaCl particles (0:100) 
and compaction at 350 MPa. 

 
Due to the porous structures heterogeneity characteristics of the space-holder method, it‟s 

 

probably that the increase in the slope may be a consequence of the local plastic 

deformation within the cell walls and local densification of porous structures blocks at 

high strain levels. 
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Figure 8 shows the relationship between Young´s modulus and yield stress values versus 

the final porosity of the Ta scaffolds. Not surprinsingly, the stiffness and compressive 

strength of these porous structures decreased with increasing porosity. The Young 

modulus values of tested samples with 60% porosity were 1.5 - 2.3 GPa, those with 70% 

porosity were 0.8 - 1.1 GPa and for those with 80% porosity were close to 0.35 GPa. 
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Figure 8 Relationship between the (a) elastic modulus and (b) yield 
strength versus theoretical porosity. 

 
 
According to data reported in the literature about values of strength and elastic modulus in 

compression test of human cancellous bone from two different locations (6.6 to 36.2 MPa 

and 0.130 to 1.080 GPa, respectively), tantalum open-porous structures developed by 

space holder method could be suited for their use as substitutes for human bone tissues 

(Kopperdahl et al., 2002; Goldstein, 1987; Keaveny et al., 1997; Martens et al., 1983). 

 

The yield strength values obtained are higher to those of trabecular bone, and therefore, 
 

suitable for bone tissue engineering (Wang X et al., 2010). It is observed that a higher 
 

degree of interconnected pores produces a decrease of the corresponding yield strength 
 

values, probably, due to a higher pore collapse during the compression test. 
 

The effect of particle size (i.e., pore size) and compactation pressure on the stiffness of the 

scaffolds (Figure 8a) was less prominent at high porosity. In fact, this effect was almost 

negligible for a scaffold porosity of 80%. The same response was observed for its influence 

in the yield strength of the scaffolds (Fig. 8b). 

It is worth noting that for samples with 60% porosity, the presence of entrapped NaCl 

particles in the closed pores that could not be removed by dissolution could have had an 

influence on the results of the compression tests. As aforementioned this ocurrence caused 

deviation from the designed values of the scaffold porosity as well as heterogeneity in 

their mechanical properties. 

The compacting pressure had a most notable effect on mechanical properties of the scaffolds 

for those produced with larger size of space holder particles. The highest values 

for both yield strength and stiffness of the compacted samples were obtained with a 

compaction pressure of 450 MPa. 
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Previous studies have already discussed the relationship between mechanical properties 

and pore size (Cao et al, 2006; Guden et al., 2008). Results obtained in this work showed 

that samples processed with larger space holder particles (0:100) produced scaffolds with 

the highest values of modulus and yield strength. 

4. Conclusions 
 

The space holder process used to produce Ta scaffolds allowed the manufacturing of 

samples with a wide range of porosity levels and controllable pore geometry. This method 

is a promising candidate for the fabrication of tantalum porous materials in a variety of 

orthopaedic surgical applications. This yields a simple and cost-effective method for 

producing high-quality interconnected porous metals. 

This study revealed that the transition from closed or isolated pores to interconnected 

pores occurred when the total porosity of the scaffolds reached 70%. However, using 

NaCl particles with different size ranges the formation of interconnected pores for samples 

with lower porosities (60%) was possible. 

The open-cell structures obtained with 70 % of porosity were characterized by a 

morphology and elastic modulus similar to that of cancellous bone. Thus, the space-holder 

is an appropriate and reproducible method to produce three-dimensional tantalum 

scaffolds with reasonable manufacturing costs. 
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