sincFold: end-to-end learning of short- and long-range interactions in RNA secondary structure
Visualitza/Obre
Autor/a
Data de publicació
2024ISSN
1477-4054
Resum
Motivation: Coding and noncoding RNA molecules participate in many important biological processes. Noncoding RNAs fold into well-defined secondary structures to exert their functions. However, the computational prediction of the secondary structure from a raw RNA sequence is a long-standing unsolved problem, which after decades of almost unchanged performance has now re-emerged due to deep learning. Traditional RNA secondary structure prediction algorithms have been mostly based on thermodynamic models and dynamic programming for free energy minimization. More recently deep learning methods have shown competitive performance compared with the classical ones, but there is still a wide margin for improvement. Results: In this work we present sincFold, an end-to-end deep learning approach, that predicts the nucleotides contact matrix using only the RNA sequence as input. The model is based on 1D and 2D residual neural networks that can learn short- and long-range interaction patterns. We show that structures can be accurately predicted with minimal physical assumptions. Extensive experiments were conducted on several benchmark datasets, considering sequence homology and cross-family validation. sincFold was compared with classical methods and recent deep learning models, showing that it can outperform the state-of-the-art methods.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
57 - Biologia
Paraules clau
Pàgines
11
Publicat per
Oxford University Press
Col·lecció
25; 4
Publicat a
Briefings in Bioinformatics
Citació
Bugnon, Leandro A.; Di Persia, Leandro; Gerard, Matias [et al.]. sincFold: end-to-end learning of short- and long-range interactions in RNA secondary structure. Briefings in Bioinformatics, 2024, 25(4), bbae271. Disponible en: <https://academic.oup.com/bib/article/25/4/bbae271/7690295>. Fecha de acceso: 23 oct. 2024. DOI: 10.1093/bib/bbae271
Nota
We would like to thank the AWS Cloud Credit for Research, the Ministerio de Producción, Ciencia y Tecnología, Santa Fe (PEICID2022-075) and the Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (Ciencia y tecnología contra el hambre) for their support for this work. This work was supported by ANPCyT (PICT 2018 3384, PICT 2022 0086) and UNL (CAI+D 2020 115). We also thank Nvidia for donating Titan XP GPUs used in the research.
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Ciències Bàsiques [94]
Drets
© The Author(s) 2024. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com https://creativecommons.org/licenses/by/4.0/)


