Show simple item record

dc.contributor.authorYe, Zhou
dc.contributor.authorZhu, Xiao
dc.contributor.authorMutreja, Isha
dc.contributor.authorKumar Boda, Sunil
dc.contributor.authorFischer, Nicholas G.
dc.contributor.authorZhang, Anqi
dc.contributor.authorLui, Christine
dc.contributor.authorQi, Yipin
dc.contributor.authorAparicio, Conrado
dc.date.accessioned2023-04-20T13:45:46Z
dc.date.available2023-04-20T13:45:46Z
dc.date.issued2021-08
dc.identifier.citationYe, Zhou; Zhu, Xiao; Mutreja, Isha [et al.]. Biomimetic mineralized hybrid scaffolds with antimicrobial peptides. Bioactive Materials, 2021, 6(8), p. 2250-2260. Disponible en: <https://www.sciencedirect.com/science/article/pii/S2452199X21000037>. Fecha de acceso: 20 abr. 2023. DOI: 10.1016/j.bioactmat.2020.12.029ca
dc.identifier.issn2452-199Xca
dc.identifier.urihttp://hdl.handle.net/20.500.12328/3676
dc.description.abstractInfection in hard tissue regeneration is a clinically-relevant challenge. Development of scaffolds with dual function for promoting bone/dental tissue growth and preventing bacterial infections is a critical need in the field. Here we fabricated hybrid scaffolds by intrafibrillar-mineralization of collagen using a biomimetic process and subsequently coating the scaffold with an antimicrobial designer peptide with cationic and amphipathic properties. The highly hydrophilic mineralized collagen scaffolds provided an ideal substrate to form a dense and stable coating of the antimicrobial peptides. The amount of hydroxyapatite in the mineralized fibers modulated the rheological behavior of the scaffolds with no influence on the amount of recruited peptides and the resulting increase in hydrophobicity. The developed scaffolds were potent by contact killing of Gram-negative Escherichia coli and Gram-positive Streptococcus gordonii as well as cytocompatible to human bone marrow-derived mesenchymal stromal cells. The process of scaffold fabrication is versatile and can be used to control mineral load and/or intrafibrillar-mineralized scaffolds made of other biopolymers.en
dc.format.extent11ca
dc.language.isoengca
dc.publisherElsevierca
dc.relation.ispartofBioactive Materialsca
dc.relation.ispartofseries6;8
dc.relation.urihttps://www.sciencedirect.com/science/article/pii/S2452199X21000037ca
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).ca
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.otherMineralització biomimèticaca
dc.subject.otherAntimicrobianaca
dc.subject.otherPèptids catiònics i amfipàticsca
dc.subject.otherCitocompatibilitat del teixit durca
dc.subject.otherMineralización biomiméticaes
dc.subject.otherAntimicrobianoes
dc.subject.otherPéptidos catiónicos y anfipáticoses
dc.subject.otherCitocompatibilidad de tejido duroes
dc.subject.otherBiomimetic mineralizationen
dc.subject.otherAntimicrobialen
dc.subject.otherCationic and amphipathic peptidesen
dc.subject.otherHard tissue cytocompatibilityen
dc.titleBiomimetic mineralized hybrid scaffolds with antimicrobial peptidesen
dc.typeinfo:eu-repo/semantics/articleca
dc.description.versioninfo:eu-repo/semantics/publishedVersionca
dc.rights.accessLevelinfo:eu-repo/semantics/openAccess
dc.embargo.termscapca
dc.subject.udc616.3ca
dc.identifier.doihttps://dx.doi.org/10.1016/j.bioactmat.2020.12.029ca


Files in this item

 

This item appears in the following Collection(s)

Show simple item record

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/
Share on TwitterShare on LinkedinShare on FacebookShare on TelegramShare on WhatsappPrint