SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome
Autor/a
Data de publicació
2022ISSN
0305-1048
Resum
The development of advanced genetic tools is boosting microbial engineering which can potentially tackle wide-ranging challenges currently faced by our society. Here we present SURE editing, a multi-recombinase engineering rationale combining oligonucleotide recombineering with the selective capacity of antibiotic resistance via transient insertion of selector plasmids. We test this method in Mycoplasma pneumoniae, a bacterium with a very inefficient native recombination machinery. Using SURE editing, we can seamlessly generate, in a single step, a wide variety of genome modifications at high efficiencies, including the largest possible deletion of this genome (30 Kb) and the targeted complementation of essential genes in the deletion of a region of interest. Additional steps can be taken to remove the selector plasmid from the edited area, to obtain markerless or even scarless edits. Of note, SURE editing is compatible with different site-specific recombinases for mediating transient plasmid integration. This battery of selector plasmids can be used to select different edits, regardless of the target sequence, which significantly reduces the cloning load associated to genome engineering projects. Given the proven functionality in several microorganisms of the machinery behind the SURE editing logic, this method is likely to represent a valuable advance for the synthetic biology field.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
57 - Biologia
Paraules clau
Pàgines
19
Publicat per
Oxford University Press
Publicat a
Nucleic Acids Research
Citació
Piñero Lambea, Carlos; Eva, Garcia-Ramallo; Miravet-Verde, Samuel [et al.]. SURE editing: combining oligo-recombineering and programmable insertion/deletion of selection markers to efficiently edit the Mycoplasma pneumoniae genome. Nucleic Acids Research, 2022, [p. 1-19]. Disponible en: <https://academic.oup.com/nar/advance-article/doi/10.1093/nar/gkac836/6754916?login=true>. Fecha de acceso: 2 nov. 2022. DOI: 10.1093/nar/gkac836
Número de l'acord de la subvenció
info:eu-repo/grantAgreement/EC/H2020/670216
info:eu-repo/grantAgreement/EC/H2020/634942
Nota
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program [670216 (MYCOCHASSIS)]; Spanish Ministry of Economy, Industry and Competitiveness (MEIC) (to the EMBL partnership); Centro de Excelencia Severo Ochoa; CERCA Program from the Generalitat de Catalunya; European Union’s Horizon 2020 Research; Innovation Program [634942 (MycoSynVac)]; LaCaixa Fundation [Livetherapeutics HR18-00058]; C.P.-L. acknowledges the support of ‘Programa Torres Quevedo’ grant [PTQ2020-011048] funded by MCIN/AEI/10.13039/501100011033; European Union ‘NextGenerationEU/PRTR’; M.L.-S. acknowledges the support from FEDER project from Instituto Carlos III (ISCIII, Accion Estratégica en Salud 2016) ´[CP16/00094]. Conflict of interest statement. None declared.
Enllaç al document relacionat
Aquest element apareix en la col·lecció o col·leccions següent(s)
- Ciències Bàsiques [94]
Drets
© This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com https://creativecommons.org/licenses/by-nc/4.0/


