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Abstract
Tissue-engineered constructs require mimicking the extracellular matrix 
microenvironment of native tissue for better promoting cell growth. Commercial 
three-dimensional (3D) printers provide a versatile platform to fabricate tissue models, 
but they possess certain constraints regarding the reproduction of natural tissue 
structures due to the limited functionality of current slicing strategies and hardware. In 
this study, we present a new approach to 3D-printing polylactic acid (PLA) constructs 
with fibers in the range of microns by combining the oozing effect and algorithm-aided 
design (AAD) with a conventional fused deposition modeling printer. Three different 
oozing geometries were compared with two controls to explore their mechanical 
behavior and their cellular culture growth potential. Microscopic analysis revealed that 
oozing groups possessed higher porosity and statistically significantly thinner fibers 
than controls. Sodium hydroxide treatment reversibly increased the hydrophilicity of 
PLA without affecting the scaffolds’ mechanical properties in the compression tests. 
In addition, cell culture assays showed that oozing specimens exhibited a greater 
capacity of promoting SaOs-2 osteoblastic cell proliferation after 7 days in comparison 
with controls. We demonstrated that randomly distributed microfibered environments 
can be fabricated with an ordinary 3D printer utilizing the oozing effect and advanced 
AAD, resulting in improved biomimetic 3D constructs for tissue-engineering strategies.

Keywords: Oozing; 3D printing; Tissue engineering; Cell cultures; Polylactic acid 

1. Introduction
The demand for new tissues in regenerative medicine therapies has led to an increase 
in new tissue-engineering strategies to fabricate synthetic constructs for damaged 
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tissue replacement.1,2 Tissue-engineered constructs or 
scaffolds require mimicking the microenvironment of the 
biological extracellular matrix (ECM) niche, composed 
of a microfibered complex that contributes to the 
mechanical support of the tissue.3,4 The morphology and 
microstructure of scaffolds must satisfy specific mechanical 
and biological requirements including structure material 
organization, surface morphology, and proper porosity 
(pore size, distribution, and interconnectivity) to 
promote cell adhesion and proliferation, and subsequent 
ECM remodeling.5,6

Additive manufacturing technologies (three-
dimensional [3D] printing) have become a promising 
approach to personalized regenerative treatments. These 
techniques are characterized by their design potential, high 
speed, and low cost, which allow the fabrication of tissue 
constructs from the micro- to the macro-scale, providing 
suitable structural and mechanical support for 3D cell 
cultures, thereby producing new, enhanced tissue.7-12 
Numerous types of constructs have been developed for 
several tissues using 3D printing for regenerative medicine: 
composites and polymers for bone tissue engineering,13,14 
cartilage for the meniscus,15 or polylactic acid for vascular 
grafts,16 among others.17  

There are several sorts of additive manufacturing 
technologies that generate scaffolds for biomedical 
applications. Traditional modalities, such as fused 
deposition modeling (FDM), selective laser sintering 
(SLS), or stereolithography (SLA), among others,18 allow 
the creation of components with micro-scaled geometries 
in various materials, such as polymers, composites, and 
metals with high accuracy and reproducibility.19,20 Despite 
these advantages, many of these printing conditions are 
lethal to cells, such as high temperature or toxic chemicals. 
Hence, these techniques commonly generate acellular 
scaffolds that can be utilized for tissue-engineering 
purposes by seeding cells after fabrication.21 

In contrast, recent techniques such as 3D bioprinting, 
in which a suspension of living cells together with 
suitable biomaterials and growing factors (bioink) is 
directly deposited to create 3D living tissue,22 create 
interesting soft-tissue constructs, such as composites 
for ear regeneration,23 or collagen for the human heart, 
in addition to many others.24-26 3D bioprinting can be 
classified according to American Society for Testing and 
Materials (ASTM) into: extrusion-based,27 jetting-based,28 
and vat photopolymerization-based.29 Although these 
techniques have a variety of applications, including trauma 
treatment, whole tissue creation, and in vitro drug testing, 
several drawbacks including bioink’s dimensional stability, 
limited speed, or cell viability during printing process 

remain unsolved; therefore, soft materials like hydrogels 
are generally utilized for fabrication.21,27,30 

FDM is one of the most widely utilized 3D printing 
technologies due to its versatility, simple maintenance, 
and low cost.31,32 In comparison to others, this technique 
possesses many advantages, including availability of a 
wide range of biodegradable and biocompatible materials 
that can be printed, and compatibility with different 
CAD software. FDM has a simple working principle: A 
preformed polymeric thermoplastic filament is heated 
to a semiliquid state and then extruded through a 
nozzle directly onto the building platform following a 
programmed model, with thin layers being deposited 
on top of one another.33-35 Moreover, no toxic solvents 
are needed to dissolve the polymeric filaments for 
printing, thus avoiding cell mortality when working with 
cell cultures.36,37 Nevertheless, FDM has certain major 
constraints such as limited accuracy due to the thickness 
of the final extruded filament, the relationship between 
viscosity and nozzle diameter, or the high temperature 
applied during the melt-extrusion process that may change 
inherent material properties.38

Limited resolution is, particularly, one of the main 
disadvantages in FDM as the accurate impression is 
limited by the nozzle diameter.39,40 Commonly, these 
nozzle diameters range from 0.8 mm to 0.2 mm, being 
unusual to find smaller diameters due to their easy 
clogging tendency and subsequent incapacity to ensure 
proper flow settings.41,42 Furthermore, another well-
known drawback of FDM printing occurs when the 
nozzle deposits a small amount of molten material and 
immediately moves to the next position. This movement 
creates the “stringing” effect or oozing: a very thin “hair” 
of molten material that extends across the direction of 
travel of the nozzle.43,44 The oozing effect can be caused 
by a slow retraction speed, overheating in the extruder, 
high printing speed, or very long movements over open 
spaces, among others.45-47 

The achievement of a microfiber-like environment 
represents a major feature to better mimic the tissue ECM 
niche. Several techniques such as electro direct writing,48 
electrospinning,49,50 or melt-blowing51 can create micro-
scaled fibers, but FDM lacks the capacity to generate the 
thin required fibers due to the technique’s own limitations. 
However, recent studies have successfully fabricated various 
arrays of microfibers leveraging the oozing effect, by the 
manipulation and implementation of certain parameters 
of the printing process, such as the printing speed or the 
feed rate, and combined them with algorithm-aided design 
(AAD).44,52 Generally, these approaches can be found as a 
stack of parallel-like patterns with fibers in the range of 
hundreds of microns,42 or as a combination of parallel-like 
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structures with layers of randomly distributed microfibers 
created by another technique (such as melt-spinning or 
electrospinning).53,54 Although the fundamentals of this 
methodology have been similarly reported elsewhere,44,52 
AAD-controlled random distributions remain unexplored. 
These advances point to the direction of overcoming one 
of the fundamental architectural flaws of FDM, which is 
the macroscopic geometry of the fibers and subsequent 
macro-porosity of the scaffolds.

Several thermoplastic materials used in FDM 
printing include polylactic acid (PLA), acrylonitrile 
butadiene styrene (ABS), polycaprolactone (PCL), 
polyether ether ketone (PEEK), and nylon,20,55 or other 
natural biopolymers.56 PLA is a promising biopolymer 
in biomedical applications due to its properties such as 
biocompatibility, biodegradability, mechanical strength, 
process ability, and non-toxicity.57 PLA scaffolds have been 
extensively utilized in bone tissue,58 cartilage,59 meniscus,60 
vascular tissue,61 and other biomedical applications.62 
However, PLA has certain limitations concerning its 
use, such as a slow degradation rate and hydrophobicity, 
which affect cell adhesion to scaffold, rendering new tissue 
formation difficult.61

In this study, we developed algorithm-designed 
3D constructs utilizing the oozing effect, employing 
both parallel and random distributions of the fibers 
(ranging from 30 µm up to a few hundred). In addition, 
we compared these constructs with ordinary FDM-
printed scaffolds to analyze their cell growth potential. 
A selection of three different oozing-like geometries and 

two commonly manufactured controls were 3D-printed 
and fully characterized to better understand their 
architectural and mechanical properties together with 
their biological potential. The algorithm-controlled 3D 
random distribution of the microfibers in the oozing 
specimens in cell cultures represents a novel approach 
to developing a better biomimetic scaffold to be used in 
tissue-engineering repairing strategies.

2. Materials and methods
The research methodology employed to evaluate the 
scaffolds design and microstructure was based in 3 stages 
shown in Figure 1 and described in detail below in this 
section. A total of five experimental groups with five 
different infill geometries were selected for the study: 
Three groups were printed with oozing technique, and two 
controls were printed following standard procedure. 

2.1. Design of the experimental infills
The three oozing specimens were designed following 
three different sequences: two of them with a parallel-
fiber pattern, differentiated by a low-density knitting and 
a high-density knitting, respectively, and the third one 
with a random fiber pattern. In addition, two controls 
were designed with standard architectures: a waffle-like 
geometry and a gyroid (Figure 2). The five experimental 
groups, namely random oozing (Or), simple oozing (Os), 
complex oozing (Oc), gyroid (Gy), and waffle (Gof), were 
all designed cubic-shaped with an outer volume of 10 × 10 × 
10 mm. All oozing groups, Os, Or, and Oc, were developed 
using the Silkworm (v0.0.1) plugin for Grasshopper3d 

Figure 1. Stages of experimental methodology. Abbreviations: PLA, polylactic acid; SEM, scanning electron microscopy.
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(Rhinoceros). Control group (Gof) was designed with CAD 
software, and Gy group was designed with Ultimaker Cura 
(v4.8.0, Ultimaker) slicer. All specimens were prepared 
for 3D printing with Ultimaker Cura (v4.8.0, Ultimaker) 
(Figure S1 in Supplementary File).

The oozing print methodology was based on depositing 
a small drop of extruded material on a certain coordinate, 
then moving the nozzle to the next coordinate without 
extruding any material between both points. This method 
allows the generation of oozing fiber. The Or specimen 
was designed by distributing a random population of 60 
points in each of the 4 lateral façades of a 10 × 10 × 10 mm 
cube, with a total of 240 points (Figure 2A1 and A2). The 
resulting lattice was created by assigning several random 

displacements of the nozzle on an X–Y plane, and then 
iterating different patterns at every layer of the Z axis. These 
displacements were generated and developed in Silkworm 
plugin by designing different tool paths (Figure 2C and D). 
The Os specimen was designed by creating a grid of 8 × 8 
square spaces on a 10 × 10 mm X–Y plane (Figure 2B1 and 
B2). The X–Y planes were stacked along the Z axis, and 
each layer was rotated 90° from the previous one enabling 
the creation of the whole volume. The specimen was 
printed using the identical oozing methodology as with the 
Or specimen. Figure 2D shows the Grasshopper tool paths 
used for this specimen. The Oc specimen was designed 
following the same procedure as with the Os specimen by 
creating a grid of 12 × 12 square spaces on a 10 × 10 mm X–Y 
plane. Two commonly used infill patterns were selected as 

Figure 2. Schemes and toolpaths for scaffold design. Orange dots represent the nozzle stop, and black lines show the deposited material in form of oozing 
fibers. (A1) Planes showing the random distribution of 60 points created for Or specimen. (A2) Schematic of nozzle displacement path for Or specimen. 
(B1) Parallel pathways and planes created for Os specimen. (B2) Schematic of nozzle displacement path for Os specimen. (C) Grasshopper toolpath for Or 
specimen. (D) Grasshopper toolpath for Os specimen. 
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control groups: a gyroid geometry (Gy) and waffle-like 
geometry (Gof). The Gy specimen was generated using the 
gyroid infill form in Ultimaker Cura software creating four 
iterations in a 10 × 10 × 10 mm cube. The Gof sample was 
designed in SolidWorks (Dassault Systemes) as a 10 × 10 
× 10 mm cube with an internal matrix of 5 × 5 equidistant 
holes of 1 × 1 mm.

2.2 Three-dimensional printing of scaffolds
All scaffolds were 3D-printed using an Ender-5 Pro 
printer (Creality 3D) equipped with a 0.4 mm nozzle 
and using 1.75 mm diameter PLA filament (Smartfil, 
Smartmaterials 3D), 210°C extrusion temperature, 
60°C bed temperature, and 0.2 mm layer height. The 
printing speed was 80 mm/s for the control groups, with 
a feed rate of 1200 and constant flow rate. For the oozing 
groups, the printing speed was 59 mm/s, whereas the 
feed rate and the flow rate were set by Silkworm plugin  
(see Figure S2 for G-codes). For controls (Gy and Gof), 
G-codes were generated with Ultimaker Cura, with the 
.STL files imported beforehand. For experimental groups 
(Or, Os, and Oc), the G-codes were directly obtained 
and exported from Silkworm plugin (Grasshopper3d). 
After printing, all specimens were characterized, with the 
volume (x, y, and z) measured using a vernier caliper and 
the weight determined on a digital scale (Figure 3).

2.3. Porosity determination by 
X-ray microtomography
Porosity was measured using a Skyscan 1272 micro-CT 
(Bruker) at a 10 mm resolution. The X-ray source peak 
voltage was 50 kV with an intensity of 200 µA, 180° 
scanning, and a 0.2° step. The porosity was obtained 
using the CTAn software provided by Bruker. Ranges of 
thickness and separation distributions were also analyzed 
within this study (Figures 4 and 5).

2.4. Fiber thickness analysis
Fiber thickness was measured using a stereomicroscope 
(StereoBlue SB 1903, Euromex) with a digital camera (CMEX 
DC5000f, Euromex). Measurements were performed using 
the software ImageFocus Plus V2 (Euromex). For each 
experimental group, three samples were fabricated at five 
different heights (2 mm, 4 mm, 6 mm, 8 mm, and 10 mm) 
by directly stopping the 3D printer when the height of the 
sample reached the desired value. A total of three fibers 
were randomly selected at these five different heights per 
specimen. The thickness was measured at five points along 
each fiber: start (at the very beginning of the fiber), mid1 
(an equidistant point from the middle and the start), center 
(at the middle point of the fiber), mid2 (an equidistant 
point from the middle and the end), and end (a point very 
close to the end of the fiber). However, regarding Gy and 

A B C D E

10 mm

Figure 3. 3D-printed PLA experimental groups with different knitting patterns. (A) Gy: gyroid architecture; (B) Gof: waffle-like architecture; (C) Oc: 
oozing with parallel dense knitting; (D) Or: oozing with random knitting; and (E) Os: oozing with parallel low-dense knitting. Images in the top row 
present perspective view of the specimens, and the bottom row shows top-view images of the specimens.
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A

B

C

D

E

F

1 2 3

Specimen Volume
(mm3) SD Mass (g) SD Porosity (%)

Or 1213 11.97 0.319 0.011 83.66

Oc 1188 27.09 0.413 0.010 77.78

Os 1200 25.47 0.327 0.003 86.58

Gy 1071 20.69 0.329 0.007 76.04

Gof 1227 22.38 0.486 0.017 67.83

Figure 4. X-ray microtomography reconstructions of the five specimens. (A) Gy, (B) Gof, (C) Oc, (D) Or, and (E) Os. Column 1 shows perspective views 
of the specimens, column 2 shows the top views, and column 3 shows the lateral views of the specimens. (F) Physical characteristics (volumes, masses, and 
total porosity) of the specimens (n = 10).
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Figure 5. Range distributions for (A) Gy, (B) Gof, (C) Oc, (D) Or, and (E) Os. Column 1 shows thickness distribution, and column 2 shows fiber separation 
distribution.

1 2

A

B

C

D

E

Range (μm) Range (μm)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

Pe
rc

en
t (

%
)

https://doi.org/10.36922/ijb.2337


Oozing 3D-printed scaffolds for tissue engineering

8Volume X Issue X (2024) https://doi.org/10.36922/ijb.2337

International Journal of Bioprinting

Gof, geometries we measured the grid thickness instead of 
shred thickness, as they do not possess proper fibers as the 
oozing groups (Figure 6).

2.5. Effect of sodium hydroxide treatment 
Scaffolds were submerged in a sodium hydroxide solution 
(NaOH, 2 M solution, Sigma-Aldrich) for 15 min at room 
temperature. Then, the samples were washed for 5 min in 
distilled water three times.

2.6. Scaffold surface analysis
The specimens were coated with a gold layer using an agar 
sputter coater (AGB 7340, AgarScientific) and analyzed 
with a scanning electron microscope (SEM, JSM 5410, 

JEOL) operated at 10 kV. A total of four regions per scaffold 
were studied (Figure 7).

2.7. Contact angle assays
Water contact angle was assessed using PLA discs with a 
contact angle measuring system (OCA 15, Dataphysics) 
using the sessile drop method. For these assays, six PLA 
discs (10 mm in diameter and 2 mm in height) were 
3D-printed using the same parameters described above 
with a 100% infill. A distilled water drop (3 µL) was 
generated at 1 µL/s, and photographs were captured for 
posterior analysis using SCA 20 software (Dataphysics) 
(Figure 8).

Figure 6. Fiber thickness analysis. (A–C) Scheme of the fiber thickness measuring setup. (A) Scheme of the five different heights (2, 4, 6, 8, and 10 mm) 
for performing fiber measurements. (B) Example of three randomly selected fibers at each height of the sample to perform the fiber thickness analysis. (C) 
Representation of five selected points to measure thickness along the fiber (start, mid1, center, and end). (D) Fiber thickness means measurements per 
specimen (n = 45, * p < 0.05 by Kruskal–Wallis test). (E) Thickness measurements across the fiber per specimen.
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the hydrophilicity assay showed statistically significant differences (* p < 0.05) between controls and 

NaOH-treated groups at each measuring point (day 0, day 1, day 2, and day 9), with a constant shift of 

~9° to 15° observed between conditions. Similarly, statistically significant differences in contact angle 

within time were separately found in both conditions. Additionally, the contact angle in the controls was 

statistically significant (¶p < 0.05) between day 0 and day 1, and between day 0 and day 2. However, the 

NaOH-treated group showed differences between day 0 and day 2, and between day 0 and day 9 (Figure 

8). 

 
 

Figure 7. Specimens surface analysis by scanning electron microscopy. (A) Control specimens’ images 

(prior to treatment) and (B) specimens images after NaOH treatment. Scale bar: 100 µm. 

FIG.6 SEM

0h

Gy

Oc

Or

Os

Gof

A B

Figure 7. Specimens surface analysis by scanning electron microscopy. (A) Control specimens’ images (prior to treatment) and (B) specimens images after 
NaOH treatment. Scale bar: 100 µm.

2.8. Compression tests
A total of five specimens per condition (control and treated 
with NaOH) for each experimental group were tested on 
a universal testing machine (Z005, Zwick) equipped with 
a 2.5 kN load cell and compression plates. The load and 
displacement values of the tested specimens were recorded, 
and the compression stress and strain were calculated 
according to the obtained load and displacement after the 
experiments. The loading rate was at 5 mm/min (Figure 9). 
E modulus was calculated at the linear elastic deformation 
region using a linear regression included in TestXpert 
II (Zwick).

2.9. Cell cultures
SaOs-2 cell line (Sigma-Aldrich) was cultured in McCoy’s 
5A medium (Fisher Scientific), supplemented with 10% 
fetal bovine serum (FBS, Sigma) and 1% penicillin–
streptomycin (Fisher Scientific). A total of 300,000 cells 
were seeded per scaffold. Cells were incubated for 1, 3, 
and 7 days at 37°C, under a condition of 5% CO2 and 
95% humidified air. Metabolic activity was assessed by 
performing a resazurin reduction assay. Briefly, seeded 

cells were incubated with cell culture medium (600 µL) 
containing resazurin (10 µg/mL) sodium salt (Sigma) 
for 2 h at 37°C, under a condition of 5% CO2 and 95% 
humidified air. Then, 100 µL of cell culture medium 
were transferred to a 96-well plate, and absorbance was 
measured at 570 nm and 600 nm using a microplate 
reader (Synergy HT Multi-detection Microplate Reader, 
Bio-Tek). Cell metabolic activity was expressed in terms 
of percentage reduction of resazurin and normalized to 
control values obtained from tissue culture plastic (TCP) 
of the same day.

Immunological assays to observe cell adhesion to the 
scaffolds were performed and observed using a confocal 
microscope (CLSM, TCS SP8, Leica Microsystems). 
Briefly, after 7 days of seeding, scaffolds were washed 
with phosphate-buffered saline (PBS) to remove 
dead cells. Then, the scaffolds were fixed using 4% 
paraformaldehyde (PFA) for 30 min and washed with 
PBS three times. Acti-Stain 488 phalloidin antibody 
(Cytoskeleton, Inc.) was used for cytoskeleton staining 
by diluting it in PBS (7 µL per mL), and scaffolds were 
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incubated for 45 min with the solution (500 µL). Then, 
scaffolds were washed three times with PBS. Cell nuclei 
were stained using DAPI ready-made solution (Sigma-
Aldrich) diluted at 1:1000 in PBS and incubated for 30 
s. Finally, the scaffolds were washed with PBS and were 
observed in the confocal microscope using the Alexa 
488 and DAPI filters and z-stacking. All assays were 
performed in triplicate (Figure 10).

2.10 Statistical analysis
All results are expressed as means ± standard deviation 
(SD). All data were analyzed using different tests of 
equality of means, with a confidence level of 95% (p < 
0.05). First, Kolmogorov–Smirnov test was deployed to 
assess data normality. The results of normality tests dictate 
the different methods used for testing: in cases where the 
data were normally distributed, an analysis of variance 

(ANOVA) test was used to compare means of samples, or 
else, Kruskal–Wallis tests were used.

3. Results
3.1. Observations of the scaffolds
The five experimental groups—Gy, Gof, Oc, Or, and Os—
are presented in Figure 3, captured in perspective (top) 
and top views (bottom), respectively. The unique features 
of each scaffold were clearly displayed, and the different 
knitting patterns could be observed. Figure 3A shows the 
gyroid geometry (Gy), and Figure 3B shows the waffle-like 
geometry of (Gof). Figure 3C and E show the predominant 
parallel pattern created using the oozing technique, in a 
dense grid (Oc) and in a lesser dense grid (Os), respectively. 
Figure 3D shows the aleatory pattern of Or, where fibers do 
not follow any predominant direction. A very important 
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Figure 8. Water drop contact angle assays. (A) Scheme of water drop contact angle determination at different tested times. (B) Contact angle measurements 
at day 0, day 1, day 2, and day 9 in control groups and NaOH-treated groups. (n = 6, * and ¶p < 0.05 by Kruskal–Wallis test)
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fact that we observed in the oozing groups is that fibers 
never touch each other in the interior knitting. 

3.2. Volume and mass measurements
The outer volumes determination showed similar values 
between Gy and Oc, and both have statistical differences 
(p < 0.05) with Or, Os, and Gof (Figure 4F). In the case 
of Gy, this difference may be attributed to the design 
of the geometry of Gy itself, as this specimen does not 
possess a supporting frame like the others. This lack of 
structural support for the (Gy) specimen may have led 
to a certain shrinkage of the structure after printing 
(Figure S1 in Supplementary File). Masses were found 
to differ between specimens, with Gof being the heaviest 
of them all, followed by Oc, then Gy and Os with similar 
weights, and Or was the lightest (Figure 3F). Our results 
demonstrated that the density of the inner knitting 
pattern varies considerably from one specimen to 
another and therefore the amount of extruded material 
in each specimen.

3.3. X-Ray microtomography porosity
The X-ray scanning and reconstruction analysis of all 
the specimens’ geometry allowed the appreciation of the 
actual inner geometry of the scaffolds and performing 

their physical characterization (Figure 4A–E). The 
mass and total porosity analysis of the specimens 
demonstrated a direct correlation with the amount of 
extruded material, with the oozing specimens—Oc, Or, 
and Os—being the most porous and, hence, the lightest 
ones, in contrast with control groups (Gy and Gof). The 
thickness distribution determination showed a very 
similar profile in all oozing groups (Oc, Or, and Os) 
and in control groups (Gof and Gy), with the majority 
ranging from ~30 µm to ~630 µm (Figure 5). However, 
the thickness distribution was much more concentrated 
in the range of ~310 µm to ~390 µm in Gy specimen. In 
terms of the separation distribution, our results showed 
many similarities between groups, but with different 
pattern distributions: a marked skew right pattern for 
Gy specimen, a tendency to a uniform distribution 
in Gof, Oc, and Or displaying a symmetric unimodal 
pattern, and a multimodal distribution in Os group. 
In addition, Gof, Or, and Os showed a more scattered 
separation pattern. The biggest separation distribution 
and the most concentrated were found in Gy group, as 
the values range from 1630 µm to 1830 µm. In contrast, 
the smallest separations were found in Oc group, as it 
possessed the densest knitting pattern.

Figure 9. Stress–strain curve for compression tests. (A) Representative curves for compression assay in control samples (prior to treatment). (B) 
Representative curves for compression assays in samples after NaOH treatment. (C) Results for E modulus, maximum stress, and maximum elongation at 
maximum stress per each specimen group (n = 5 per experimental group and per condition, p < 0.05).

A B

C

Specimen
E modulus (MPa) Max Stress (N/mm2) Max dL at Fmax (mm)

Ctrl SD NaOH SD Ctrl SD NaOH SD Ctrl SD NaOH SD
Or 1.97 0.30 1.81 0.40 27.93 0.38 27.61 0.13 8.35 0.14 8.62 0.13
Oc 2.86 0.68 3.04 0.21 4.49 0.39 3.99 0.48 1.26 0.17 1.11 0.17
Os 3.85 1.57 3.23 1.02 2.36 0.30 1.93 0.29 0.97 0.17 0.84 0.14
Gy 17.64 1.51 5.78 1.51 27.90 11.37 32.84 0.31 7.00 3.43 8.48 0.21
Gof 57.56 95.19 25.31 27.08 21.15 12.10 25.73 10.53 4.92 3.85 6.59 3.26
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3.4. Fiber thickness
The results of fiber thickness measurements at five different 
selected points in each fiber (Figure 6A–C) demonstrated 
statistically significant differences (p < 0.05) between the 
oozing groups (Or, Oc, and Os) and the control groups (Gy 
and Gof), with the fibers in the oozing group relevantly 
thinner than in the controls (Figure 6D). 

All oozing specimens showed greater thickness at the 
end of the fibers and a progressive narrowing as it reached 
the center of the fiber. This characteristic was common 
to all samples. Specimen Gof showed more constant 
values, and specimen Gy displayed almost equal values 
in every measured point. Although the mean values of 
fiber thickness were found to be similar at the beginning 

(start) and at the end (end) of the fibers, measurements 
in the center of the fiber (center) varied depending on the 
specimen, and were narrower in the oozing groups (Os, 
Oc, and Or), ranging from ~70 µm to ~240 µm, than in 
the (Gof) or (Gy) groups, which displayed less difference 
in thickness. These results may be related to the fact that 
the control groups were not properly fabricated with 
oozing techniques but with regular FDM nozzle deposition 
(Figure 6E).

3.5. NaOH treatment
With scanning electron microscopy (SEM) analysis, we 
studied several images of regions of interest (ROI) on the 
surface of the scaffolds to compare the surface aspect prior 
to and after NaOH treatment (Figure 7A–B). Our results 
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Figure 10. Cell culture assays in the scaffolds. (A) Representative immunofluorescence images of 

confocal microscopy of cell culture onto the different scaffolds (Gy, Gof, Oc, Or, and Os) and in control 

(TCP) at day 7 after seeding. Nuclei were stained with DAPI and cytoskeleton with phalloidin. Scale bar: 

150 µm. (B) Metabolic activity at days 1, 3, and 7 (n = 3, p < 0.05 Mann–Whitney test). 
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Figure 10. Cell culture assays in the scaffolds. (A) Representative immunofluorescence images of confocal microscopy of cell culture onto the different 
scaffolds (Gy, Gof, Oc, Or, and Os) and in control (TCP) at day 7 after seeding. Nuclei were stained with DAPI and cytoskeleton with phalloidin. Scale bar: 
150 µm. (B) Metabolic activity at days 1, 3, and 7 (n = 3, p < 0.05 Mann–Whitney test).
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demonstrated that NaOH solution erodes the surface of 
the fibers. In addition, the hydrophilicity assay showed 
statistically significant differences (* p < 0.05) between 
controls and NaOH-treated groups at each measuring point 
(day 0, day 1, day 2, and day 9), with a constant shift of ~9° 
to 15° observed between conditions. Similarly, statistically 
significant differences in contact angle within time were 
separately found in both conditions. Additionally, the 
contact angle in the controls was statistically significant 
(¶p < 0.05) between day 0 and day 1, and between day 0 
and day 2. However, the NaOH-treated group showed 
differences between day 0 and day 2, and between day 0 
and day 9 (Figure 8).

3.6 Compression study
Our results from the determination of elastic modulus (E), 
maximum stress (Max stress), and maximum elongation at 
maximum force (Max dL at Fmax) for all scaffolds in both 
experimental conditions (NaOH treatment and control) 
demonstrated no statistically significant differences (p 
< 0.05) between conditions for any studied parameter, 
indicating that treatment does not affect mechanical 
properties (Figure 9). Interestingly, Gy and Gof specimens’ 
data showed a higher E modulus in both conditions (NaOH 
treatment and control) compared to the oozing groups, 
with Gof ’s being three or four times higher than that of 
Gy. Maximum stress values showed similar behavior in 
both experimental conditions for all specimens, except for 
Oc and Os, which were found to be considerably lower. 
Maximum elongation at maximum force showed similar 
results in both conditions for all specimens with a lower 
value in Oc and Os specimens (Figure 9C).

3.7. Cell culture studies
To assess how the morphology or accuracy of the 
3D-printed structure could affect the cell response, SaOs-
2 cells were seeded and cultured within the scaffolds. 
Metabolic activity was determined using a resazurin salt 
reduction assay, and cytoskeleton staining was observed 
with a confocal microscope (Figure 10A). Tissue culture 
plastic (TCP) was used as a control for cell behavior while 
Gof, commonly used in tissue-engineering applications, 
was used as a control of the infill structure. As shown in 
Figure 10B, there was no difference in the initial adhesion 
(day 1) of cells to the different scaffolds, except for Or, 
which displayed a significantly lower cell adhesion (p 
< 0.05). However, this lower metabolic activity was not 
statistically significant at days 3 and 7. Moreover, the 
metabolic activity was gradually increased during the 
culture time, being comparable to that of Gof and normal 
TCP, and was significantly higher for Os and Oc at day 
7 (p < 0.05). These results correlated with higher density 

of fibers per volume in the Os and Oc scaffolds. The 
immunofluorescence results (Figure 10B) were consistent 
with the metabolic activity, showing that scaffold walls of 
Gy and Gof were mostly covered by spread cells at day 7. 
Similarly, fibers of Os, Or, and Oc were also completely 
covered by spread cells.

4. Discussion
Oozing or stringing effect has been generally described 
as a non-desirable drawback in FDM.38,62 Despite these 
considerations, some recent studies have developed 
interesting approaches utilizing this effect to design 
environments with fibers in the range of microns (from a 
few tens up to hundreds). Various geometries have been 
studied by means of this technique, such as planar parallel 
arrangements,44,63 3D parallel distributions,51,59,64 and also 
hybrid constructions, combining FDM with another 
technique, such as airbrushing54 or electrospinning,65 in 
order to create a stack of alternate layers. Nevertheless, these 
approaches still fail to produce an improved biomimetic 
3D environment with randomly distributed fibers, as they 
all remain gridded.66-68

Our study focused on developing a set of novel FDM-
printed constructs with random and gridded distributions 
of microfibers that may better mimic those of the native 
ECM niche. In addition, we analyzed the potential of 
these constructs, which support cell culture growth, as 
bone tissue-engineering strategies. This may represent an 
important progress, as we introduced for the first time the 
potential of using the oozing or stringing phenomenon to 
enhance the 3D-printed scaffolds characteristics for better 
promoting cell attachment and growth, as the created fiber 
dimensions better matched the ECM natural niche.69,70

We demonstrated that design is a fundamental tool 
to overcome FDM printing limitations when using 
conventional printing machines. Our results showed that it 
is possible to surpass the constraints of an accessible FDM 
ordinary printer by using AAD to improve the architecture 
of the scaffolds, corroborating similar algorithm-based 
methodology previously described in the literature.65 
Moreover, our scaffolds’ design algorithms were especially 
designed to create random distributions of the fibers, 
providing an innovative framework that enhances the 
FDM printing application to an improved biomimetic-like 
approach in the tissue-engineering field.70-72 

Our results demonstrated the oozing effect is a 
repeatable technique that can be controlled considering 
a certain degree of tolerance within fiber geometry. An 
accurate setting of the printing parameters, such as feeding 
speed and printing speed, among others, and other intrinsic 
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variables like temperature and relative humidity of the 
ambience have been reported to reduce fiber geometrical 
variability.44 Despite these considerations, a certain degree 
of heterogeneity can be expected when working with the 
oozing technique.51

Our results showed that the scaffolds of the oozing 
groups exhibited an enhanced cell attachment and 
proliferation within 7 days of culture in comparison 
with controls. These results are possibly attributed to 
the microscale of the fibers together with an increased 
porosity of the whole construct, as suggested elsewhere.42,73 
These data increase the knowledge about the utility of 
FDM oozing-created constructs as scaffolds for growing 
cells, in concordance with other previous publications. 
Nevertheless, further culture assays should be performed to 
confirm and improve the understanding of their biological 
potential as a tissue-engineering strategy.57

Regarding fiber geometry, we found that oozing groups 
possessed dispersed fiber thickness depending on the 
point they were measured, with the lowest measurement 
found in the middle of the fiber in every case, in agreement 
with other studies.73 In contrast, controls (Gy and Gof) 
presented notably more homogeneous fiber thickness, 
due to the fact that their infill cannot be considered a 
proper fiber but a regular FDM deposition.5,54 Oozing 
groups exhibited statistically significant thinner fibers than 
controls, corroborating that the oozing effect can achieve 
considerably narrower fibers than standard FDM printing 
as it has been proven in the literature.44,51 Acquiring a better 
control over the range of thicknesses for every printed fiber 
with the oozing technique would represent a major advance 
for creating tissues with different fiber arrangements. 
Printing speed together with flow rate and feed rate are 
fundamental variables to be mastered in future works as 
pointed elsewhere.41,45,73

As observed, a scaffold’s porosity grade was directly 
related to mechanical behavior as an increase in the inner 
voids led to a lower compressive strength. These results 
are in agreement with other reported publications, which 
described the scaffold porosity being inversely proportional 
to mechanical strength, resulting in a less dense construct 
that can only withstand lower stress.56,74 Interestingly, it 
has been described that mechanical strength is geometry-
dependent. Fernandez-Vicente et al.35 described a 
series of constructs with different infill patterns and the 
same mass that showed different mechanical behavior 
as certain specimens supported greater mechanical 
loading depending on their pattern design. Despite these 
observations, the influence of the geometry pattern caused 
a variation of less than 5%.

Polylactic acid is a well-known biocompatible polymer 
extensively used in biomedical applications. However, it 
has certain limitations concerning its use such as a slow 
degradation rate and strong hydrophobicity that can 
interfere with cell adhesion.56,60 Alternatively, our results 
demonstrated that the NaOH treatment can increase the 
hydrophilicity characteristics of the PLA scaffold and 
maintain them nearly 9 days, enhancing the potential of PLA 
in bioengineering tissue applications. Furthermore, our 
data demonstrated that control specimens showed a similar 
behavior to NaOH-treated specimens, suggesting that FDM 
printing itself (melting and extruding process) modifies 
PLA’s hydrophilic superficial properties. This temporally 
increased hydrophilicity proposes a certain reversibility 
of the process when PLA is 3D-printed, corroborating 
other published studies.75 Interestingly, NaOH treatment 
of the constructs did not affect their mechanical behavior, 
probably due to the treatment only affecting the surface of 
the scaffolds, as previously described.57

With good cell adhesion and proliferation activity on 
the scaffolds in all tested specimens, our data support the 
application of this new set of scaffolds in tissue engineering. 
In addition, in the cases of Oc and Os specimens, the cell 
activity observed was higher than in the other specimens. 
These results may be justified by the smaller fiber 
separation in these two specimens in comparison with 
Or and controls (Gof and Gy) that could allow increased 
cell density in the scaffold pores. This cell density could 
promote greater cellular proliferation and occupancy in 
these constructs, as it has been noted in other reports.67,76 
Nevertheless, these results may be confirmed with ulterior 
studies in the field.

5. Conclusion
The oozing technique together with our AAD-controlled 
random distribution provides an interesting platform 
to create 3D-printed scaffolds with fibers in the range 
of microns that may better mimic the ECM niche than 
those fabricated by conventional FDM without advanced 
programming. The benefits of this technical approach 
are reliant on its capacity to overcome the limitation 
of the extruded filament’s diameter, and the typical 
parallel-like distribution of the scaffolds. Nonetheless, 
we are cognizant of the necessity to better control the 
oozing process to improve the mastering of the thickness 
and geometry of fibers. Our strategy to combine AAD 
with an accessible 3D printer together with cell culture 
assays represents a powerful approach to creating novel 
biomimetic constructs with great potential suitable for 
tissue engineering.
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