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ABSTRACT 

Atopic dermatitis (AD) is a chronic, itchy skin condition that affects 15–20% of children, but 

may occur at any age. It is estimated that 16.5 million U.S. adults (7.3%) have AD that initially 

began at >2 years of age, with nearly 40% affected by moderate or severe disease. Therefore, a 

quantitative measurement that could track the evolution of atopic dermatitis severity could be 

extremely useful in assessing therapeutic efficacy. Currently, SCORAD (SCOring Atopic 

Dermatitis) is the most frequently used measurement in clinical practice. However, SCORAD 

has the following disadvantages: (1) Time consuming: calculating SCORAD usually takes about 

7–10 minutes per patient which poses a heavy burden on dermatologists; and (2) Inconsistency: 

due to the complexity of SCORAD calculation, even well-trained dermatologists could give 

different scores for the same case. In this study we introduce ASCORAD, an automatic version 

of the SCORAD, based on state-of-the-art convolutional neural networks that measure atopic 

dermatitis severity based on skin lesion images. Overall, we have demonstrated that ASCORAD 

may prove to be a rapid and objective alternative method for the automatic assessment of atopic 

dermatitis, achieving results comparable to human expert assessment while reducing inter-

observer variability. 

Keywords: Atopic dermatitis, SCORAD, Deep learning, Automatic severity assessment, CADx 

system  
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INTRODUCTION 

Atopic dermatitis (AD) is a multifaceted, chronic relapsing inflammatory skin disease that is 

commonly associated with other atopic manifestations such as allergic conjunctivitis, allergic 

rhinitis, and asthma (Bieber, 2008)(Berke et al., 2012)(Drucker et al., 2017). It is the most 

common skin disease in children, affecting approximately 15% to 20% of children and 1% to 3% 

of adults (Eichenfield et al., 2014)(Nutten, 2015). Onset of disease is most common by 5 years of 

age, and early diagnosis and treatment are essential to avoid complications of AD and improve 

quality of life (Eichenfield et al., 2014). 

The European Task Force on Atopic Dermatitis (ETFAD) developed the SCORAD (Stalder et al., 

1993) (SCORing Atopic Dermatitis) index to create a consensus on assessment methods for AD. 

The SCORAD index consists of the interpretation of the extent of the disorder, that is, the 

intensity, composed of six visual items (erythema, oedema/papules, effect of scratching, 

oozing/crust formation, lichenification, and dryness), and two subjective symptoms (itch and 

sleeplessness); the maximum score is 103 points. If the subjective symptoms (itch and 

sleeplessness) of the SCORAD are not assessed; the total score is 83 points and it is known as the 

objective SCORAD. The SCORAD index is influenced by subjective ratings that may be affected 

by social and cultural factors and therefore, ETFAD recommends the objective SCORAD. One of 

the advantages of using the objective SCORAD system is that it is based on a European consensus 

of experts on pediatric dermatology. The system is representative and well evaluated (Schmitt et 

al., 2013), but shows, as with all other systems, intra- and inter-observer disagreements. However, 

it is currently widely used in clinical practise to assess patient evolution and measure the 

effectiveness of treatments (Panahi et al., 2011)(Butler et al., 2020)(Silverberg et al., 2020)(Yoo 

et al., 2020)(Nahm et al., 2020). 
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Much work has been done in the development of a better scoring system to reach a more objective 

and quicker to fill scoring system. Novel tools for patient use like the patient-oriented (PO) 

validated scoring system PO-SCORAD (Stalder et al., 2011) detect changes in signs and 

symptoms without the intervention of doctors. The Three Item Severity score (TIS) is a simple 

method to determine the severity of AD, and assessment of the total TIS takes about 43 seconds 

per patient. The eczema area and severity index (EASI) (Hanifin et al., 2001) showed a good inter 

and intra observer variability but it is a complex and time consuming index to fill. However, all 

these scoring systems still suffer from the same variability problem as they share similarities with 

SCORAD (Chopra et al., 2017). 

In recent years artificial intelligence has achieved human-expert-like performance in a wide variety 

of tasks such as skin cancer classification, detection and lesion segmentation. Extensive work has 

been done in the detection of atopic dermatitis with different imaging methods including MPT 

(Guimarães et al., 2020), clinical image (Wu et al., 2020), and even electronic health records 

(EHR) (Gustafson et al., 2017), Skin pathologies like psoriasis have also attracted the attention of 

researchers for the same reasons as atopic dermatitis, as the main scoring system, PASI, is a time 

consuming and highly subjective scoring method. Dash et al. (Dash et al., 2019) proved that 

convolutional neural networks are able to segmentate psoriasis with high accuracy, sensitivity and 

specificity outperforming existing methods. Anabik Pal et al. (Pal et al., 2016) demonstrated the 

effectiveness of CNNs in visual sign classification, a key task to automatic severity grading. Dash 

et al. (Dash et al., 2020)  combined both segmentation and severity grading creating a CADx 

system for psoriasis lesion grading. 
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Creating a more objective and practical scoring system for atopic dermatitis assessment is key to 

improve evidence-based dermatology. In this study we introduce ASCORAD, an automatic 

version of the SCORAD: a quick, accurate and fully automated scoring system. 

MATERIALS AND METHODS 

Datasets and annotations 

In this retrospective, non-interventional study, three new annotated datasets were constructed in 

order to train and validate the performance of the lesion surface segmentation and visual sign 

severity assessment algorithms. The first two datasets are of purely light skinned patients 

(Fitzpatrick I, II y III), as it proved to be easier to gather datasets of such characteristics, whilst 

the third consists of images of IV, V and VI skin types according to Fitzpatrick scale. 

Demographic characteristics of each dataset are gathered in Table 1. Clinical images were 

collected from online public sources and patient consent and ethics committee were not necessary. 

Published images belong to Danderm dermatology atlas and the author gave his consent for 

publication. 

Legit.Health-AD dataset 

Legit.Health-AD is a dataset collected from online dermatological atlases that consists of 604 

images that belong to light skinned patients, of which one third are children (Table 1), suffering 

from atopic dermatitis with lesions present on different body parts. The dataset contains the 

following percentage of body zones: head (22%), trunk (11%), arms (23%), hands (9%), legs 

(16%), feet (8%), genitalia (3%), full body (1%) and skin close-up (7%). The dataset contains a 

substantial variety of clinical images taken from different angles, distances, light conditions, body 
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parts and disease severity. Figure 1 depicts the normalized intensity distribution by visual sign. 

The images have a minimum size of 260 x 256, an average size of 667 x 563 and a maximum size 

of 1772 x 1304.  

Legit.Health-AD-Test dataset 

A second dataset, Legit.Health-AD-Test, was built for testing purposes. The dataset was gathered 

from several dermatological atlases publicly available and contains a total number of 367 images 

that belong exclusively to light skinned patients. The dataset is only characterized by skin type 

(Table 1) and basic demographic information like age and sex is missing as the original sources 

do not provide that information. The images were downloaded one by one and each of them was 

reviewed by a physician to approve the inclusion of the image in the dataset. Duplicates or very 

similar images were removed and no other data sampling technique was applied. Similarly to 

Legit.Health-AD, the dataset contains images of children and adults with a great variability in 

angles, distances, light conditions, body parts and disease severity. The dataset contains the 

following percentage of body zones: head (35%), trunk (20%), arms (18%), hands (7%), legs 

(13%), feet (2%), genitalia (2%) and skin close-up (3%). The visual sign intensity distribution of 

this dataset is different to Legit.Health-AD, having more cases of zero intensity for most of the 

visual signs (Figure 1). The images have a minimum size of 313 x 210, an average size of 574 x 

537 and a maximum size of 2848 x 3252. 

Legit.Health-AD-FPK-IVI dataset 

Legit.Health-AD-FPK-IVI is a dataset collected from online dermatological atlases that contains 

photos of children and adult patients with Fitzpatrick IV, V and VI skin types suffering from atopic 

dermatitis. The same manual procedure as for Legit.Health-AD-Test was applied in order to gather 
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the dataset and basic demographic information like age and sex is also missing (Table 1). It is 

composed of 112 images with a minimum size of 200 x 204, an average size of 766 x 695 and a 

maximum size of 3024 x 4032. The dataset contains the following percentage of body zones: head 

(41%), trunk (10%), arms (17%), hands (8%), legs (13%), feet (3%) and skin close-up (8%). The 

goal of including this dataset in the study was to gather preliminary evidence of the efficiency of 

the algorithms in dark skin.  

Ground truth labels 

The corresponding ground truths of each dataset were prepared by nine experts, three for each 

dataset, who treat patients with atopic dermatitis in their daily practice, to reduce variability by 

combining their results. The experts annotated the images without more context than the images. 

They had to draw a mask over the lesion and choose a score from 0 to 3 for each visual sign that 

comprise the SCORAD. 

We obtained the ground truth labels for lesion segmentation and visual sign intensity classification 

by averaging the masks of the three annotators and by averaging the intensity levels. We chose 

the mean over the median as it is the statistical measure that gets the best results for generating 

ground truth labels from multi-annotator ordinal data (Lakshminarayanan and Teh, 2013). 

Data preprocessing 

Images were resized to 512 × 512 and pixel values scaled between zero and one. In addition, 

images in which the disease was too small in the picture were cropped, focusing on the disease. 

Ground truth labels were obtained from averaging the results as explained in the previous section. 

However, we ran some additional experiments using an alternative ground truth only for the 
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training set, consisting of the median visual intensity, instead of the mean. As a result of applying 

the mean and median, discrete visual sign intensity levels yielded real numbers, which had to be 

rounded in order to return to the discrete range [0,3]. To prevent information loss, we considered 

rescaling the values to [0,10] and [0,100] before rounding, and compared these ranges to the 

original one. 

With regards to lesion surface masks, the average mask was computed, resulting in a grayscale 

image in the range [0,255]. A pixel intensity threshold of 155 was applied to obtain a binary mask 

that was used as the ground truth. Images were finally normalised to the range [0,1]. 

Deep learning model 

The ASCORAD calculation can be divided in two parts, lesion surface segmentation and visual 

sign severity assessment. We trained two separated models, one for each task, and named 

Legit.Health-SCORADNet to the neural networks involved in the calculation of the ASCORAD 

(source code available at github.com/Legit-Health/ASCORAD). 

Lesion surface segmentation 

For the lesion surface segmentation problem we applied a U-Net, an architecture that was first 

designed for biomedical image segmentation and demonstrated great results on the task of cell 

tracking (Ronneberger et al., 2015). The main contribution of this architecture was the ability to 

achieve good results even with hundreds of examples. The U-Net consists of two paths: a 

contracting path and an expanding path. The contracting path is a typical convolutional network 

where convolution and pooling operations are repeatedly applied. We decided to use the Resnet-

34 (He et al., 2015) architecture, which is the typical backbone used in the contracting path. 

Jo
urn

al 
Pre-

pro
of



Visual sign severity assessment 

We trained a multi-output (Xu et al., 2020) classifier, with one softmax layer per visual sign 

(Figure 2). We used the EfficientNet-B0 network architecture (Tan and Lee, 2019) that was 

pretrained on approximately 1.28 million images (1,000 object categories) from the 2014 

ImageNet Large Scale Visual Recognition Challenge (Russakovsky et al., 2014), and trained it on 

our dataset using transfer learning (Pan et al., 2010). EfficientNets achieve better accuracy and 

efficiency than previous CNNs with fewer parameters by applying a new scaling method that 

uniformly scales all dimensions of depth/width/resolution using a simple yet highly effective 

compound coefficient. There are eight versions consisting of a different number of parameters, 

with the B0 being the smallest network that achieves state-of-the-art 77.1% top-1 accuracy on 

ImageNet for a network consisting of 5 million parameters. 

Visual sign severity grading can be seen as a piecewise regression, or, alternatively, as a discrete 

classification with four discrete value labels for each visual sign intensity. In the case of multiple 

visual signs, a multi-label classification network can be used to solve the problem. However, in 

order to exploit methods like DEX (Rothe et al., 2015), one softmax layer per visual sign is needed. 

So, for the purpose of applying the DEX method, we constructed a multi-output classifier with six 

softmax layers consisting of N neurons each, with N being 4, 11 or 101, depending on the range 

of the ground truth labels. 

DEX method proved to obtain better results on regression metrics by approaching a regression 

problem like a classification and applying a softmax expected value:         

  

                                                          𝐸(𝐸)  = ∑𝐸
𝐸=0 𝐸𝐸𝐸𝐸                                                                 

(1)                                                                                                                         
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where 𝐸 =  0, 1, . . . ,𝐸 is the 𝐸-dimensional output layer of each visual sign, representing 

softmax output probabilities 𝐸𝐸  ∈  𝐸, and 𝐸𝐸 are the discrete intensity levels corresponding to 

each class 𝐸. 

Evaluation metrics 

Dermatologists may have a bias, a fixed effect where one observer consistently measures high or 

low. There may also be a random effect or heterogeneity, where the observer measures higher 

than others for some subjects and lower for others. In order to measure inter-observer variability, 

understand annotation quality in more detail and compare it to the performance of the 

algorithms, we calculated a set of metrics. 

First of all, we computed the Relative Standard Deviation (RSD) and Cohen's kappa for all the 

visual signs and lesion surface segmentation. In the case of the annotation of visual sign 

intensity, we also measured the times that the three observers gave the same result or the full 

agreement rate (FAR). To complement FAR, two more metrics were calculated: the times that at 

least two observers gave the same result whilst the third observer gave a result that deviated ±1 

from the other observer’s, or the Partial Agreement Rate 1 (PAR1). The same metrics without 

the ±1 condition for the third observer was called Partial Agreement Rate 2 (PAR2). Therefore, 

the metrics are ordered as follows in regards to their restrictiveness: FAR > PAR1 > PAR2. To 

assess the quality of the annotations and understand in more depth the results, we compared the 

results against an algorithm that randomly picked three intensity values for each visual sign. We 

ran this for millions of times and found that RSD of a random visual sign evaluation tends to 

27%, FAR to 6%, PAR1 to 34% and PAR2 to 62%.  

Jo
urn

al 
Pre-

pro
of



We also calculated metrics that allowed a direct comparison of the Legit.Health-SCORADNet 

and annotation, for both lesion segmentation and visual sign severity assessment. Pixel accuracy, 

Area Under the Curve (AUC), Intersection over Union (IoU) and F1 Score metrics were the 

preferred metrics for segmentation, whilst for the severity assessment of visual signs we used 

Relative Mean Absolute Error (RMAE). 

Experimental setup 

We ran two main experiments for each task, one with images containing only light skin and 

another adding a small number of dark skin images in the training set. 

In the first experiment, we used Legit.Health-AD for training, and Legit.Health-AD-Test and 

Legit.Health-AD-FPK-IVI for testing. We followed a 6-fold cross-validation strategy in order to 

train the models. The models trained on the different folds were tested on both test sets and the 

results were averaged over the folds in order to reduce the variance and bias.  

The second experiment was built to better understand the performance of the network on dark 

skin when including a tiny fraction of dark skinned patient images in the training set. In this 

experiment, we used Legit.Health-AD, Legit.Health-AD-Test and a subset of Legit.Health-AD-

FPK-IVI for training and the rest for testing. The training and test subsets of Legit.Health-AD-

FPK-IVI were obtained with a 3-fold cross-validation strategy. This means that the training set 

was composed of 971 light skinned patient images, Legit.Health-AD and Legit.Health-AD-Test 

combined,  and 75 dark skinned patient images, which is a tiny fraction of the total images (8%). 

The dark skin test set was composed of the remaining 37 images. This split was done 3 times (3-

fold) including different images in the training and test set, in order to obtain more reliable results. 
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In the case of visual sign severity assessment, we also ran experiments to find the optimal range, 

testing [0, 3], [0, 10] and [0, 100] ranges. In addition, we tested the mean and the median as the 

statistical measure for obtaining the ground truth of the training set. This project was entirely run 

on a single NVIDIA Tesla V100 (32GB) GPU. 

CADx system 

With the objective of making the algorithms accessible to the healthcare professional, we created 

a fully integrated CADx system, a web application that integrates the Legit.Health-SCORADNet 

algorithm and calculates the patient-based ASCORAD using clinical images. The CADx system 

includes three stages: uploading the images of the affected areas, processing the images, and 

reporting the Automatic Scoring of Atopic Dermatitis (ASCORAD). 

In the first stage, images of affected areas are uploaded to the system using a simple user interface, 

depicted in Figure 3a. The user has to choose the body zone from the options defined in the original 

SCORAD (Stalder et al., 1993): head and neck, right upper limbs, left upper limbs, right lower 

limbs, left lower limbs, anterior trunk, back and genitals. In some cases, like children before the 

age of 2 with all bodies affected, a full body photograph can also be uploaded. In addition, the 

patient answers a simple questionnaire of two items, itchiness (0-10) and sleeplessness (0-10). 

In the second stage, the Legit.Health-SCORADNet algorithm processes the images and 

automatically calculates the severity of atopic dermatitis by calculating the intensity of each visual 

sign and the surface of the lesion. Finally, the output of the algorithm is shown in an user-friendly 

report containing an image with the estimated lesion surface and a chart with the evolution of the 

ASCORAD over time. The final report of the proposed CADx system is depicted in Figure 3b. 
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Computing the ASCORAD requires calculating the proportion of skin covered by the lesion. We 

solved this by including a small piece of hardware called AI Marker, a sticker with several shapes 

and colors that helps translate pixels into a metric unit of measurement. The AI Marker should be 

kept close to the lesion and it is automatically detected. In addition, the Body Surface Area (BSA) 

is calculated with the patient's height and weight using the Mosteller (Lee et al., 

2008)(Orimadegun and AO, 2014) formula. Once the surface of the lesion and BSA are estimated, 

the percentage can be calculated by dividing the surface of the lesion by the BSA (Equation 2). 

This allows the CADx system to calculate the final value of ASCORAD. When the AI Marker is 

not used, lesion surface percentage is input by the user manually, although the CADx system is 

still capable of calculating the visual sign intensity values automatically. 

When more than one image is uploaded, the surface of the images is summed and the maximum 

(Dirschka et al., 2017) of each visual sign intensity is used for the ASCORAD calculation. 

Therefore, the final formula for N images of the whole body can be written as follows: 

 

                             𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  
1

5
∑𝐸

𝐸
𝐸𝐸

𝐸𝐸𝐸
+

7

2
∑6

𝐸=1 𝐸𝐸𝐸(𝐸𝐸,1, . . . ,𝐸𝐸,𝐸)  + 𝐸                              

(2)                  

where 𝐸 stands for the lesion surface in a metric unit of measurement, 𝐸 ∈  [0,3] stands for visual 

sign intensity, 𝐸 ∈  [0,20] stands for the sum of the symptoms input by the patient. 

Software and statistical analysis 

The models were implemented and trained using Pytorch (Paszke et al., 2019), Metrics and 

KFold were calculated in Python using the SciKit-Learn package (Pedregosa et al., 2012) and 

plotted using MatPlotLib (Hunter, 2017). 
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RESULTS 

Annotation 

Evaluation of the variability of the expert dermatologist annotations in all the examined datasets 

was calculated. These results provided background for comparing with the results of Legit.Health-

SCORADNet. We found out that the lesion segmentation annotation was very consistent across 

datasets, with an accuracy of (81.0-91.3)%, AUC of 0.91, F1 of 0.86-0.91 and RSD of (8.6-9.1)%. 

It can also be seen that Legit.Health-AD-FPK-IVI had the largest disagreement if we look at the 

IoU metric, with 0.80 against 0.86 and 0.91 on light skin datasets. Note that the F1 score is also 

the lowest for the dark skin dataset. In regards to visual sign severity assessment, Legit.Health-AD 

had more disagreement among the specialists, but the other datasets had more positive skewed 

distributions, meaning that the majority of the intensity values were close to 0. 

Lesion surface segmentation 

We compared the difference at pixel level as there was no physical reference on the images to 

obtain the real size of the lesions. As can be seen in Table 2, the annotations of the three datasets 

had a RSD close to 9%, Cohen’s kappa of 0.79 and AUC around 0.90. Despite the similar results 

on the previously mentioned metrics, Legit.Health-AD-FPK-IVI seemed to have more 

discrepancies among the annotators, as it showed the lowest IoU and F1 values, 0.80 and 0.86, 

respectively.  

Visual sign severity assessment 

The results presented in Table 3, 4 and 5 provide background for comparing with the results of 

Legit.Health-SCORADNet in the visual sign severity assessment task. All the values are below 
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random RSD and above random FAR, PAR1 and PAR2 for all visual signs.  Erythema is the 

visual sign that obtains the best Cohen’s kappa value in general, and lichenification (0.06) in 

Legit.Health-AD and excoriations (0.08) and dryness (0.09) in Legit.Health-AD-FPK-IVI get 

values very close to 0. The 6 visual signs constitute a maximum of 63 points of the SCORAD, as 

the sum of the intensities is multiplied by 
7

5
 (Equation 2). Giving the RSD results in terms of 

SCORAD points, the variability of Legit.Health-AD is around 11 points (𝐸𝐸𝐸 ̂ = 17%), and both 

Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI have the same variability, on average, of 8 

points (𝐸𝐸𝐸 ̂  = 12%). 

Legit.Health-SCORADNet 

Legit.Health-SCORADNet was validated on two experiments in which the network was trained on 

several data splits, as we applied a k-fold cross validation technique, 6-fold for the first experiment 

and 3-fold for the second experiment. All the results gathered in Table 6, 7, 8, 9 and 10 were 

obtained by averaging the results of the network’s performance on the different data splits and  are 

measured using the same metrics as the annotation, with the purpose of making a direct comparison 

of both.  

Legit.Health-SCORADNet showed a good performance at visual sign severity assessment, 

obtaining a RMAE of 13.0% and AUC of 0.93 at surface estimation. The total execution time of 

Legit.Health-SCORADNet for a single image was 0.34s, running on an Intel Xeon Platinum 8260 

CPU @ 2.40GHz. 

Lesion surface segmentation 

Legit.Health-SCORADNet’s lesion surface segmentation results are gathered in Table 6 and 7. The 

AUC, IoU and F1 for light skin were 0.93, 0.64 and 0.75 respectively, whilst the results on those 
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metrics were 0.83, 0.32 and 0.42 for dark skin. However, when training in a small subset of dark 

skin images (experiment 2), the results significantly improved (0.41 on IoU and 0.33 on F1), as 

can be seen in Table 7. Figure 4 and Figure 5 show the ground truth and prediction for a sample 

case of Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI respectively. 

Visual sign severity assessment 

As can be seen, on average, training with a ground truth obtained by applying the median and 

normalized in the [0,100] range obtained the best performance (Table 8). Using that configuration, 

we ran experiment 1 and 2 and we got a RMAE of 13.0% in Legit.Health-AD-Test, which had an 

inter-observer RMAE of 10.6%, having trained Legit.Health-SCORADNet on a dataset with 15.8% 

RMAE (Table 9). The RMAE on Legit.Health-AD-FPK-IVI was slightly higher, 14.3% (Table 

10), when including dark skin images in the training set and 19.8%, without including dark skin 

images. The visual sign with the worst performance on light skin was oozing (19.4%), followed 

by edema (16.0%). Lichenification (19.8%) and dryness (19.3%) were the most difficult visual 

signs for the algorithm to correctly predict on dark skin, with edema (15.4%) also having a value 

above the average. Interestingly, oozing got a much lower RMAE on Legit.Health-AD-FPK-IVI, 

while both test datasets had the same oozing intensity distribution. 

The distribution of predicted intensity values was plotted next to the ground truth distributions 

(Figure 6) to show that Legit.Health-SCORADNet was able to predict values in the whole range 

and not only the mean of the distribution. 
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DISCUSSION 

The study shows the potential of the evaluated technology. ASCORAD shows promise as an 

automatic scoring system that might enable a more objective and quick evaluation. However, 

additional validation studies are needed in real-world settings and with diverse populations to 

ensure generalizability. 

To put our results into clinical context, the annotated lesion area was compared with the algorithm-

predicted area. As some photographs do not show the complete lesion area, live assessment cannot 

be directly compared with the photograph assessment methods. However, image-based area 

assessment by an expert and predicted area have the same basis for their analysis and are therefore 

directly comparable. Legit.Health-SCORADNet resulted in a good overall RMAE of 13.0% and 

an excellent AUC of 0.93 and IoU of 0.75 for lesion surface estimation on light skin.  

Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI datasets have strong positive skewed 

distributions for all the visual signs, which means that the most frequent intensities are 0 and 1. It 

seems that a vast majority of images are of mild atopic dermatitis or that the observers had a strong 

bias towards low intensity values. If the majority of the visual signs are close to zero intensity, it 

is possible that the RSD reflected lower disagreement (9% versus 17% in Legit.Health-AD). In 

fact, Oranje et al. (Oranje et al., 2007) (RSD 20%) found an RSD of 20%, very close to the inter-

observer variability found in Legit.Health-AD. 

Looking at Cohen's Kappa values it seems that some of the visual signs like lichenification in 

Legit.Health-AD and excoriations and dryness in Legit.Health-AD-FPK-IVI have a null inter-

observer agreement. However, Cohen's Kappa is a statistical measure for nominal classification 

problems and metrics like RSD, MAE, FAR, PAR 1 and PAR 2 show that the annotation of the 

Jo
urn

al 
Pre-

pro
of



specialists is far from random. For example, the visual sign excoriations in Legit.Health-AD-FPK-

IVI obtains a Cohen’s Kappa value of 0.09 and PAR 2 of 95.5%, far from the random value (62%).  

In short, we have proved that a CNN trained with the observer’s average results can achieve a 

similar RMAE to the one of the experts. Furthermore, our automatic method outputs a value in the 

range [0,100] for each visual sign instead of [0,3] as the usual SCORAD, broadening the spectrum 

of possible outputs and turning the discrete problem into more continuous. 

CONCLUSION 

A deep learning algorithm could simplify the assessment of atopic dermatitis, a very common skin 

disease that affects 15-20% of children (Asher et al., 2006) and 1-3% of adults worldwide. Scoring 

systems like SCORAD and EASI have an inter-observer variability and are time consuming. An 

AI automated approach like ours may help to reduce such bias and therefore be a more precise 

and objective criterion for evaluation in pharmaceutical studies. Our results show that deep 

learning may be noticed as a fast and objective alternative method for the automatic assessment 

of atopic dermatitis with great potential, already achieving results comparable to human expert 

assessment, whilst missing inter-observer variability and being more time efficient. ASCORAD 

could also be used in situations where face-to-face consultations are not possible, providing an 

automatic assessment of clinical signs and lesion surface. It could also be a potential tool to reduce 

the time and effort of training clinical assessors for clinical trials and in clinical practice. 

Further work needs to be done in order to prove the validity, responsiveness and reliability of the 

system in real-world clinical practise. Despite the dataset used in this study captures the variability 

of a wide range of parameters, the algorithm should be tested on other datasets to prove its 

robustness and generalizability, in particular to dark skin tones. 
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In the future, we intend to test ASCORAD in validation studies in which the objective part of the 

SCORAD will be assessed in person by the dermatologist. Comparing the result of the algorithm 

to face-to-face assessment is crucial because some visual signs like oedema, dryness or oozing 

might present more difficulties in estimating the severity via image than in person. Furthermore, 

the AI Marker will be used in this study, helping the CADx system correctly estimate the surface 

by converting lesion pixels into a metric unit of measurement. 

The process of taking the images does not necessarily have to be done by the physician themselves, 

we believe that our algorithm has the potential to reduce costs in dermatology by saving time, 

whilst improving documentation of the evolution of the disease. This could also be interesting for 

the application in pharmaceutical clinical trials. 

LIMITATIONS 

Legit.Health datasets used in this study have a low number of images to be considered robust and, 

therefore, a larger number of images will be needed in future studies in order to obtain more 

statistically significant results. As most of the images used in this study are of light skin 

(Fitzpatrick’s I, II and III), evidence of the algorithm’s performance on dark skin (Fitzpatrick’s 

VI, V and VI) is limited. The results of the algorithms trained on light skin and tested on dark skin 

were significantly worse, however, when training with a small proportion (8%) of dark skin 

images, the results improved a lot (41% on IoU and 33% on F1). These results indicate that it 

might be possible to create a single algorithm for all the skin types, so further work will be focused 

on developing a system that can also assist doctors in the assessment of atopic dermatitis on darker 

skin types, reducing healthcare disparities in skin of color (Adamson and  Smith, 2018). In 

addition, Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI lack a detailed demographic 
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characterization. Gathering a complete and detailed demographic data will be essential in future 

studies in order to identify potential sources of bias in the datasets (Daneshjou et al., 2021).  

Another limitation that needs to be discussed is that to accurately estimate the surface of the lesion, 

the AI Maker must be used as a reference. This small piece of hardware is a sticker that contains 

a wide range of colors and shapes, which allows translating the lesion surface from pixels to a 

metric unit of measurement. If the AI Marker does not appear next to the lesion, or does not appear 

in the photo, the algorithm cannot calculate the final ASCORAD. 

An additional limitation to take into account is the total time of ASCORAD, from taking the 

picture or pictures to getting the final results. This was not measured in the study and depends on 

many factors such as the number and location of the lesions. It is also important to note that the 

time is reduced to zero if the photos are taken at home by the patients in a fully remote follow-up 

consultation. However, this might create some additional problems like getting poor quality 

images or difficulties for the patients to access some body zones by themselves. We will address 

these topics in future studies.  
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TABLES 

Table 1. Demographic characteristics. 

 Age groups (%) Sex (%) Skin type (%) 

Dataset <18 18-29 30-39 40-49 50-64 >65 Male Female Light Dark 

Legit.Health-AD 31 23 26 14 4 2 39 61 100 0 

Legit.Health-AD-Test - - - - - - - - 100 0 

Legit.Health-AD-FPK-IVI - - - - - - - - 0 100 

 

Table 2. Annotator’s performance in lesion surface segmentation. These results provide 

background for comparing with the results of Legit.Health-SCORADNet. 

Dataset ACC AUC IoU F1 RSD Cohen's kappa 

Legit.Health-AD 86.9 0.91 0.91 0.88 8.6 0.78 

Legit.Health-AD-Test 81.0 0.91 0.86 0.91 9.1 0.79 

Legit.Health-AD-FPK-IVI 91.3 0.91 0.80 0.86 9.0 0.80 

 

Abbreviations: ACC — Accuracy,  AUC — Area Under the Curve, IoU — Intersection over 

Union, F1 — F1 Score, RSD — Relative Standard Deviation. 

Table 3. Annotator’s performance in Legit.Health-AD visual sign severity assessment. These 

results provide background for comparing with the results of Legit.Health-SCORADNet. 

Visual sign RSD RMAE 

(mean) 

RMAE 

(median) 

FAR PAR 1 PAR 2 Cohen's 

kappa 

Erythema 11.5 10.7 8.3 33.1 92.0 94.5 0.34 
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Edema 16.2 14.7 11.9 21.3 74.1 84.9 0.15 

Oozing 20.0 18.2 14.8 18.0 59.6 79.3 0.19 

Excoriations 17.4 15.9 12.9 22.6 66.5 81.2 0.17 

Lichenification 20.3 18.3 15.1 10.7 59.1 74.6 0.06 

Dryness 18.7 16.9 12.8 20.0 69.3 82.3 0.14 

Average 17.4 15.8 13.8 14.4 64.7 79.3 0.17 

Abbreviations: RSD — Relative Standard Deviation, RMAE— Relative Mean Absolute Error, 

FAR — Full Agreement Rate, PAR — Partial Agreement Rate. 

Table 4. Annotator’s performance in Legit.Health-AD-Test visual sign severity assessment. 

These results provide background for comparing with the results of Legit.Health-SCORADNet. 

Visual sign RSD RMAE 

(mean) 

RMAE 

(median) 

FAR PAR 1 PAR 2 Cohen's 

kappa 

Erythema 12.1 11.2 8.8 34.0 88.0 91.5 0.35 

Edema 7.9 7.3 5.6 55.8 93.1 96.7 0.22 

Oozing 10.3 9.5 7.5 44.4 89.9 93.1 0.39 

Excoriations 12.7 11.6 9.4 39.7 79.0 87.1 0.20 

Lichenification 10.1 9.3 7.4 46.8 88.0 92.9 0.21 

Dryness 16.5 14.9 12.2 20.4 72.4 80.3 0.19 

Average 11.6 10.6 8.5 40.2 85.0 90.3 0.26 

Abbreviations: RSD — Relative Standard Deviation, RMAE — Relative Mean Absolute Error, 

FAR — Full Agreement Rate, PAR — Partial Agreement Rate. 

Table 5. Annotator’s performance in Legit.Health-AD-FPK-IVI visual sign severity assessment. 
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These results provide background for comparing with the results of Legit.Health-SCORADNet. 

Visual sign RSD RMAE 

(mean) 

RMAE 

(median) 

FAR PAR 1 PAR 2 Cohen's 

kappa 

Erythema 11.9 10.8 8.8 42.3 80.1 88.2 0.23 

Edema 8.6 8.0 6.3 54.0 90.9 94.5 0.13 

Oozing 12.7 11.6 9.4 35.1 81.9 87.3 0.27 

Excoriations 9.7 9.0 7.0 45.0 92.7 95.5 0.08 

Lichenification 13.3 12.2 9.7 27.9 85.5 90.9 0.27 

Dryness 18.2 16.4 13.4 10.8 70.2 81.0 0.09 

Average 12.4 11.3 9.1 35.9 86.6 89.6 0.18 

Abbreviations: RSD — Relative Standard Deviation, RMAE — Relative Mean Absolute Error, 

FAR — Full Agreement Rate, PAR — Partial Agreement Rate. 

Table 6. Legit.Health-SCORADNet’s results in light skin lesion surface segmentation. 

 ACC  (%) - 95% CI AUC - 95% CI IoU - 95% CI F1 - 95% CI 

Lesion surface 84.6  (80.9-88.3) 0.93 (0.90-0.96) 0.64 (0.59-0.69) 0.75 (0.71-0.79) 

 

Abbreviations: ACC — Accuracy, AUC — Area Under the Curve, IoU —Intersection over 

Union, F1 — F1 Score, CI — Confidence Interval.  
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Table 7. Legit.Health-SCORADNet’s results in dark skin lesion surface segmentation. 

Results are divided by experiment. Experiment 1 algorithm was trained on purely light 

skinned patient images and experiment 2 algorithm was trained on mixed data containing an 

8% of dark skinned patient images. 

 Experiment 1 Experiment 2 

 ACC (%) - 

95% CI 

AUC - 

95% CI 

IoU - 95% 

CI 

F1 - 95% 

CI 

ACC (%) - 

95% CI 

AUC - 

95% CI 

IoU - 95% 

CI 

F1 - 95% 

CI 

Lesion 

surface 

74.0 

(65.9-82.1) 

0.83 

(0.76-0.90) 

0.32 

(0.23-0.41) 

0.42 

(0.33-0.51) 

79.2 

(66.3-92.1) 

0.87 

(0.76-0.98) 

0.45 

(0.29-

0.61) 

0.55 

(0.39-0.71) 

 

Abbreviations: ACC — Accuracy, AUC — Area Under the Curve, IoU —Intersection over 

Union, F1 — F1 Score, CI — Confidence Interval. 

Table 8. Legit.Health-SCORADNet’s results in visual sign severity assessment. The models were 

trained on Legit.Health-AD using a different range and ground truth method and tested on 

Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI. 

 Legit.Health-AD-Test Legit.Health-AD-FPK-IVI 

Range Training GT RMAE 𝟏1- 95% 

CI 

RMAE 𝟏2- 95% 

CI 

RMAE 1 - 95% 

CI 

RMAE 2 - 95% 

CI 

[0, 3] Median 13.6 (9.7-17.5) 14.3 (10.4-18.2) 21.2 (17.3-25.0) 20.8 (16.9-24.7) 

[0, 10] Median 14.3 (10.4-18.2) 13.2 (9.3-17.0) 22.8 (18.9-26.7) 20.0 (16.0-23.9) 

[0, 100] Median 14.4 (10.5-18.3) 13.0 (9.1-16.9) 22.6 (18.7-26.5) 19.8 (15.9-23.7) 
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[0, 100] Mean 13.5 (9.6-17.4) 13.4 (9.5-17.3) 21.1 (17.2-25.0) 19.9 (16.0-23.8) 

Abbreviations:  RMAE — Relative Mean Absolute Error, CI — Confidence Interval.  

1RMAE 1 is obtained by applying the argmax function to the prediction. 

2RMAE 2 is obtained by applying the DEX method to the prediction. 

Table 9. Legit.Health-SCORADNet’s results in light skin visual sign severity assessment.  

Visual sign RMAE 𝟏1- 95% CI RMAE 𝟏2- 95% CI 

Erythema 14.1 (10.2-18.0) 13.3 (9.4-17.2) 

Edema 16.1 (12.2-20.0) 16.0 (12.1-19.9) 

Oozing 22.3 (18.4-26.2) 19.4 (15.5-23.3) 

Excoriations 11.5 (7.6-15.4) 9.6 (5.7-15.4) 

Lichenification 10.3 (6.4-14.2) 8.7 (4.8-12.6) 

Dryness 12.4 (8.5-16.3) 11.3 (7.4-15.2) 

Average 14.4 (10.5-18.3) 13.0 (9.1-16.9) 

Abbreviations:  RMAE — Relative Mean Absolute Error, CI — Confidence Interval.  

1RMAE 1 is obtained by applying the argmax function to the prediction. 

2RMAE 2 is obtained by applying the DEX method to the prediction.  
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Table 10. Legit.Health-SCORADNet’s results in dark skin visual sign severity assessment. 

Results are divided by experiment. Experiment 1 algorithm was trained on purely light skinned 

patient images and experiment 2 algorithm was trained on mixed data containing an 8% of 

dark skinned patient images.  

 Experiment 1 Experiment 2 

Visual sign RMAE 𝟏1- 95% CI RMAE 𝟏2- 95% 

CI 

RMAE 1 - 95% CI RMAE 2 - 95% CI 

Erythema 17.8 (13.9-21.7) 15.7 (11.8-19.6) 16.2 (12.2-20.2) 14.3 (10.3-18.3) 

Edema 16.8 (12.9-20.7) 18.6 (14.7-22.5) 18.1 (14.1-22.0) 15.4 (11.4-19.4) 

Oozing 24.9 (21.0-28.8) 22.7 (18.8-26.6) 9.3 (5.3-13.3) 9.0 (5.0-13.0) 

Excoriations 10.1 (6.2-14.0) 9.6 (5.7-13.5) 10.2 (6.2-14.2) 8.0 (4.0-12.0) 

Lichenification 25.9 (22.0-29.8) 20.6 (16.7-24.5) 24.0 (20.0-28.0) 19.8 (15.8-23.8) 

Dryness 39.9 (36.0-43.8) 31.7 (27.8-35.6) 26.0 (22.0-30.0) 19.3 (15.3-23.3) 

Average 22.6 (18.7-26.5) 19.8 (15.9-23.7) 17.3 (13.3-21.3) 14.3 (10.3-18.3) 

Abbreviations:  RMAE — Relative Mean Absolute Error, CI — Confidence Interval.  

1RMAE 1 is obtained by applying the argmax function to the prediction. 

2RMAE 2 is obtained by applying the DEX method to the prediction.  
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FIGURE LEGENDS 

Figure 1. Comparison of the intensity level distribution by visual sign of the datasets used in 

the study. 

Figure 2. The visual signs that compose the SCORAD. Each visual sign can be classified into 

four intensity levels: none (0), mild (1), moderate (2) and severe (3). The multi-output 

EfficientNet-B0 network trained for visual sign intensity estimation has one head for each visual 

sign. 

Figure 3. CADx system. a) Illustration of the questionnaire. b) Illustration of the report 

generated by the CADx system. The report contains the evolution across time of the 

ASCORAD, the last reported ASCORAD item by item, a picture of the lesion surface 

predicted by the algorithm, the final ASCORAD score with its translation to a category and 

some additional information like image quality. 

Figure 4. Lesion surface segmentation masks. a) Original image. b) Legit.Health-

SCORADNet’s prediction. c) Ground truth. d) Mask drawn by the first specialist. e) Mask 

drawn by the second specialist. f) Mask drawn by the third specialist. Legit.Health-AD-Test 

sample image gathered from Danderm dermatology atlas with the author’s consent. 

Figure 5. Results of experiment 1 and 2 models on a dark skin image. a) The predicted 

surface mask of the model trained on light skin. b) The predicted surface mask of the model 

trained on both light and dark skin. c) The ground truth mask. Legit.Health-AD-FPK-IVI 

sample image gathered from Danderm dermatology atlas with the author’s consent. 
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Figure 6. Legit.Health-AD-Test visual sign intensity distribution of ground truth labels 

and predictions. The horizontal axis is in the range [0, 100], as the results are given using 

the best performing model, which was trained with ground truth labels in that range. 
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