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Abstract: Stem cells have the capacity of self-renewal and, through proliferation and differentiation,
are responsible for the embryonic development, postnatal development, and the regeneration of
tissues in the adult organism. Cancer stem cells, analogous to the physiological stem cells, have
the capacity of self-renewal and may account for growth and recurrence of tumors. Development
and regeneration of healthy tissues and tumors depend on the balance of different genomic and
nongenomic signaling pathways that regulate stem cell quiescence, proliferation, and differentiation.
During evolution, this balance became dependent on all-trans retinoic acid (RA), a molecule derived
from the environmental factor vitamin A. Here we summarize some recent findings on the prominent
role of RA on the proliferation of stem and progenitor cells, in addition to its well-known function as
an inductor of cell differentiation. A better understanding of the regulatory mechanisms of stemness
and cell differentiation by RA may improve the therapeutic options of this molecule in regenerative
medicine and cancer.
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1. Introduction

Retinoic acid (RA) regulates a wide range of biological processes during development and in
adult organisms [1–9]. Retinoic acid signaling is dependent on cells that can metabolize vitamin
A (retinol) to RA. Retinol dehydrogenases oxidize retinol to retinal, and aldehyde dehydrogenases
(ALDH1A1, ALDH1A2, and ALDH1A3) oxidize retinal to RA [2,10]. Retinoic acid released from
these cells generates gradients that regulate neighboring cells. The precise RA level depends on
the availability of vitamin A (retinol), the activity of enzymes involved in RA biosynthesis (retinol
dehydrogenases and aldehyde dehydrogenases), and the RA catabolism by CYP26 enzymes [11–13].

Retinoic acid regulates transcription by interacting with heterodimers of nuclear RA receptors
(RARα, RARβ, and RARγ) and retinoid X receptors (RXRα, RXRβ, and RXRγ) bound to RA response
elements (RAREs) in the promoters of target genes [4,14,15]. The expression of over 500 genes is
upregulated or downregulated by RA [16]. Moreover, RA controls other transcriptional signaling
pathways via different nuclear receptors, such as the peroxisome proliferator-activated receptor
β/δ [17,18], and can also regulate different protein kinases in a nontranscriptional fashion [19–21].

Although RA has been widely described as an inductor of cell differentiation, depending on
cell-type, RA can antagonize cell differentiation and promote stemness (Table 1).
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Table 1. Induction of stemness or cell differentiation by retinoic acid (RA) in a
cell-type-dependent manner.

Cell Type Action Signaling Pathway RA Dose-Time References

Pluripotent stem cells Stemness Inhibition of Wnt. Activation of
Akt-mTOR 0.5 µM (24 h) [22]

Breast cancer cells
T47D403 Stemness

Lack of expression of RARα
tumor suppressor genes and

activation of RARα-PI3K-AKT
1 µM (72 h) [23]

Breast cancer cells
MDA-MB-231 Stemness

Upregulation of 1286 genes,
among them MUC4.

Activation of the axis
Src-YAP-IL6

0.1 µM (18 h)

5 µM (48 h)

[24]

[25]

Breast cancer cells
MDA-MB-468 Differentiation

Upregulation of 1358 genes,
among them HOXA1
Inhibition of the axis

Src-YAP-IL6

0.1 µM (18 h)

5 µM (48 h)

[24]

[25]

Breast cancer cells
MCF-7 Stemness Activation of

ALDH1A1-HIF1α-VEGF 1 µM (48 h) [26]

Mammary MCF12A cells
and T47D breast cancer

cells

Differentiation RARβ/TET2-miR200c-Suppression
of PKCζ 1 µM (24 h) [27]

Adult hippocampus Stemness Activation of HIF1α-VEGF 1 µM (24 h) [28]

Glioblastoma T1440,
T1452 and T1464 Stemness Increased SOX2 expression 1 µM (7d) [29]

Glioblastoma T1338 Differentiation Decreased SOX2 expression 1 µM (7d) [29]

Dormant hematopoietic
cells Stemness Attenuation of C-MYC

expression 5 µM (24–48 h) [30]

Hematopoietic stem cells Differentiation or
stemness

Differentiation through RARα
Stemness through RARγ

NOTCH1 expression
1 µM (14d) [31]

Colorectal cancer cells Differentiation
RARγ-inhibition of

YAP-increased E-cadherin
expression

1 µM (30 min) [32]

Hepatocelular carcinoma
cells Stemness RARγ-PI3K-AKT-NFκB 1 µM (48 h) [33]

Pancreatic ductal
adenocarcinoma Differentiation Decrease ALDH1, SOX2 and

NANOG 10µM (48 h) [34]

Spermatogonial stem
cells

Differentiation Upregulation of STRA8,
AGPAT3, FAM57A, WDR91 0.1µM (24 h) [35]

Regeneration of
keratinocytes Stemness TLR3-STAT3 and

NFkB-ALDH1-RA-RAR 0.1µM (48 h) [36]

2. Retinoic Acid Induces Stemness or Differentiation in the Mammary Gland and Breast
Cancer Cells

Unlike other organs, the mammary gland tissue undergoes development postnatally. An adequate
balance between stem self-renewal and stem cell differentiation is essential for this process.
Prodifferentiation and antidifferentiation effects of RA have been reported during mammary gland
development and breast cancer [23,24,37].

2.1. Growth-Promoting and Growth-Inhibiting Actions of RA in Breast Cancer Depend on the Cell
Context-Specific Balance of Activation of Transcriptional and Nontranscriptional Pathways

By global gene expression microarray analysis, Rossetti et al. [23] determined that in breast
cancer cells (T47DCtrl) grown under “physiological” RA culture conditions, many RARα-target genes,
coding for tumor suppressor signaling pathways, as RARβ and the TGFβ-TGFβR2, are in a repressed
transcriptional state marked by epigenetic histone modifications. In this situation, lack of expression
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of tumor suppressor genes cannot counteract the growth-promoting activity of nontranscriptional
signaling pathways such as PI3K-AKT, triggered by direct interaction of RARα and the catalytic subunit
of PI3K [23]. The degree of inhibition of RARα transcriptional function is variable in different breast
cancer cell lines: mild in T47DCtrl, severe in T47DG303E, and extremely severe in T47D403. Both in vitro
and in vivo treatment with supraphysiological doses of exogenous RA significantly promoted T47D403

breast cancer cell invasion [23] (Figure 1A,B).

2.2. Retinoic Acid Induces Tumor-Promoting or Tumor-Suppressive Actions in Triple-Negative Breast Cancer
Cells Due to Variable Gene Expression in Cell Lines with Differences in DNA Methylation

Marcato et al. [24] reported that the effects of RA and ALDH1A3 activity were tumor-promoting
in MDA-MB-231 and MDA-MB-435 triple-negative breast cancer cells, but tumor-suppressive in
triple-negative MDA-MB-468 breast cancer cells. The opposing tumor growth effects of ALDH1A3/RA
in breast cancer cells depend upon differential gene expression induced by ALDH1A3 or RA in
MDA-MB-231 and MDA-MB-468 cells. Increased ALDH1A3 expression upregulated 1286 and 1358
genes in MDA-MB-231 and MDA-MB-468 cells, respectively. A large divergence in gene expression
changes induced by ALDH1A3 in the two cell lines was observed because only 121 genes were
upregulated in common in both cell lines. RARβ is one of these genes (Figure 1C,D).

One of the ALDH1A3-induced genes in MDA-MB-468 cells is the homeobox transcription factor
A1 (HOXA1). The promotor of HOXA1 possesses a RARE sequence that was previously shown
to be inducible by RA [38]. HOXA1 expression is significantly reduced by ALDH1A3 knockdown
and induced by RA in MDA-MB-468 cells but is undetectable in MDA-MB-231 cells [24]. HOXA1 is
hypermethylated in MDA-MB-231 cells and hypomethylated in MDA-MB-468 cells [24]. HOXA1 is
often hypermethylated in cancer, suggesting a tumor-suppressive function [39,40].

Mucin 4 (MUC4), a potential oncogene with a RARE, inducible by RA, and associated with
triple-negative breast cancer [41,42], is significantly induced by ALDH1A3 and RA in MDA-MB-231
cells, but not in MDA-MB-468 cells. MUC4 is hypermethylated in MDA-MB-468 and hypomethylated
in MDA-MB-231 [24]. MUC4 is typically hypomethylated in cancers, and its expression is associated
with more aggressive cancer [41–45]. MUC4 knockdown in MDA-MB-231 cells reduced their
tumorigenic and metastatic properties [42], suggesting MUC4 may represent a gene that contributes to
ALDH1A3/RA-mediated tumor growth and metastasis of MDA-MB-231 cells [24].
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Figure 1. Expression of tumor suppressor genes by retinoic acid (RA) in healthy cells counteracts the 
growth-promoting activity of nontranscriptional RA signaling pathways, such as PI3K-AKT (A). In 
cancer cells, lack of expression of tumor suppressor genes by RA cannot counteract the extragenomic 
tumor-promoting actions of RA (B). Differential gene expression induced by ALDH1A3 or RA in 
MDA-MB-231 and MDA-MB-468 cells (C,D). Retinoic acid upregulates the signaling pathway Src-
YAP-IL6 involved in stemness in triple-negative MDA-MB-231 breast cancer cells (E) and 
downregulates the same pathway in triple-negative MDA-MB-468 breast cancer cells (F). 

Figure 1. Expression of tumor suppressor genes by retinoic acid (RA) in healthy cells counteracts
the growth-promoting activity of nontranscriptional RA signaling pathways, such as PI3K-AKT
(A). In cancer cells, lack of expression of tumor suppressor genes by RA cannot counteract the
extragenomic tumor-promoting actions of RA (B). Differential gene expression induced by ALDH1A3
or RA in MDA-MB-231 and MDA-MB-468 cells (C,D). Retinoic acid upregulates the signaling
pathway Src-YAP-IL6 involved in stemness in triple-negative MDA-MB-231 breast cancer cells (E) and
downregulates the same pathway in triple-negative MDA-MB-468 breast cancer cells (F).
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2.3. Retinoic Acid Upregulates the Signaling Pathway Src-YAP-IL6 Involved in Stemness in Triple-Negative
MDA-MB-231 Breast Cancer Cells and Downregulates the Same Pathway in Triple-Negative MDA-MB-468
Breast Cancer Cell Line

Retinoic acid induces tumor suppression in tumor xenografts of MDA-MB-468 breast cancer cells
while increasing tumor growth and metastasis in xenografts of MDA-MB-231 [24]. We have used
these triple-negative breast cancer cell lines as a research model to investigate the role of RA on the
regulation of the signaling pathway Src-YAP-Interleukin 6 involved in stemness [25]. We found that
RA activates this pro-invasive axis in triple-negative MDA-MB-231 breast cancer cells, yielding to an
increased invasion of these cells. On the contrary, RA inhibits the Src-YAP-IL6 axis of triple-negative
MDA-MB-468 cells, which results in decreased invasion phenotype (Figure 1E,F). In both types of
cells, inhibition of the Src-YAP-IL6 axis by the Src inhibitor PP2 drastically reduces migration and
invasion. The Src-YAP-IL6 axis controls invasion, metastasis, resistance to therapy, and stemness
of MDA-MB-231 breast cancer cells [46,47]. IL-6 is the first universal transcriptional target of YAP
involved in promoting stemness conserved from flies to humans [46,48].

Overexpression of IL-6 induces cancer cell proliferation, angiogenesis, and metastasis through
stimulating STAT3, MAPK, and Akt signaling pathways [49]. IL-6 regulates cancer stem cell,
mesenchymal stem cell formation, and epithelial to mesenchymal transition in cancer, and is a
contributing factor for chemoresistance [49]. Sansone et al. [50] found that IL-6 mRNA was robustly
elevated in mammospheres compared with breast epithelium and was required for their self-renewal
and aggressive potential. Autocrine IL6-STAT3 signaling increases stem cell properties with efficient
tumor colonization and outgrowth in vivo. Conversely, blockage of IL-6 reduces tumor burden and
metastasis [51–54].

Nuclear YAP phosphorylation in MDA-MB-231 breast cancer cells depends on Src activity. Until
recently, activation of YAP was believed to solely depend on the inhibition of the Hippo signaling
pathway that retains YAP in the cytoplasm [55]. To assess if YAP activation in MDA-MB-231 breast
cancer cells depends on Src activity, as observed in other cancer cells [56–58], we used Src inhibition
by PP2, Src interference by siRNA and transfection of Src into MDA-MB-231 breast cancer cells. Src
inhibition by PP2 and Src interference decreased YAP activity and downregulated IL-6 expression,
while Src transfection activated YAP and upregulated IL-6 [25].

The mechanism of Src activation induced by RA is not known at present. Mechanisms independent
of transcription have been reported in breast cancer cells [23]. However, the activation of the Src-YAP-IL6
axis we have observed should be the consequence of a genomic action of RA, given the 48 h delay
following incubation with supraphysiological concentrations of RA (5 µM). Extragenomic effects of RA
in breast cancer cells are produced faster and with lower levels of RA [23].

Overexpression of MUC4 in triple-negative breast cancer cells induced by RA [24] is an attractive
candidate for Src activation because cell knockdown of MUC4 in pancreatic carcinoma decreased Src
tyrosine phosphorylation significantly [59]. IL-6 induces MUC4 expression through the gp130-STAT3
pathway in gastric cancer cell lines [60].

An association of YAP activity and RA signaling with an increase in migration also has been
observed in human neural crest cells [61]. YAP, as well as its paralog TAZ, is known to act as a
stemness-promoting factor in several tissue types, including hepatic, intestinal, and skin stem cell
niches [62–65].

It has been reported that MDA-MB-231 and MDA-MB-468 are non-sphere-forming cells lines [66].
However, it is not known how the presence of RA could affect mammosphere formation of these cell
lines [24] and whether these in vitro assays may reflect the expansion of breast cancer stem and nonstem
cells in vivo. Using tumor xenografts, RA increases tumor growth and metastasis of MDA-MB-231
and decreases tumor growth of MDA-MB-468 cells [24].
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2.4. Retinoic Acid Conferred Stemness Properties to Breast Cancer MCF-7 Cells

Although different breast cancer cell lines such as 184A1, SUM149, SUM159, and HCC1954
treated with RA presented a decrease in mammosphere formation [67], the breast cancer MCF-7 cell
line responds to RA with an increase of stemness through an ALDH1A1-retinoic acid-HIF-1α-VEGF
pathway [26] (Figure 2A). It has been reported that VEGF drives breast and lung cancer-initiating
stem cells through the VEGFR-2-STATt3 signaling pathway that upregulates MYC and SOX2 [68,69]
(Figure 2B). VEGF contributes to the acquisition of stem cell properties, including self-renewal, survival,
and chemoresistance through VEGFR2 receptors, VEGF neuropilin receptors [70,71] and intracrine
VEGF receptors [72,73].

Biomolecules 2019, 9, 567 6 of 17 

line responds to RA with an increase of stemness through an ALDH1A1-retinoic acid-HIF-1α-VEGF 
pathway [26] (Figure 2, A). It has been reported that VEGF drives breast and lung cancer-initiating 
stem cells through the VEGFR-2-STATt3 signaling pathway that upregulates MYC and SOX2 [68,69] 
(Figure 2, B). VEGF contributes to the acquisition of stem cell properties, including self-renewal, 
survival, and chemoresistance through VEGFR2 receptors, VEGF neuropilin receptors [70,71] and 
intracrine VEGF receptors [72,73].  

 

 
 

Figure 2. The ALDH1A1-retinoic acid-HIF-1α-VEGF pathway is activated in breast cancer MCF-7 
cells (A). VEGF drives breast and lung cancer-initiating stem cells through the VEGFR-2-STAT3 
signaling pathway that upregulates MYC and SOX2 gene expression (B). RA, through RARβ, 
increases the production of CXCL12/SDF-1 in stroma cells and, consequently, activates the Src-ErbB2-
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methylcytosine dioxygenase (TET2) that produces DNA demethylation. The consequence is the 
induction of genes involved in cell differentiation and the activation of miR-200c expression. MiR-
200c downregulates stemness targeting the protein kinase PKCζ. RA does not perform these actions 
in aggressive breast cancers (D). 

Figure 2. The ALDH1A1-retinoic acid-HIF-1α-VEGF pathway is activated in breast cancer MCF-7
cells (A). VEGF drives breast and lung cancer-initiating stem cells through the VEGFR-2-STAT3
signaling pathway that upregulates MYC and SOX2 gene expression (B). RA, through RARβ, increases
the production of CXCL12/SDF-1 in stroma cells and, consequently, activates the Src-ErbB2-Akt
signaling pathway in breast cancer cells, promoting survival, cell growth, and invasion (C). When
the nontumorigenic, immortalized mammary epithelial cell line, MCF12A and the non-invasive
breast cancer cell line T47D were treated with RA, the RA nuclear receptor RARβ associated with
a methylcytosine dioxygenase (TET2) that produces DNA demethylation. The consequence is the
induction of genes involved in cell differentiation and the activation of miR-200c expression. MiR-200c
downregulates stemness targeting the protein kinase PKCζ. RA does not perform these actions in
aggressive breast cancers (D).
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2.5. RARβ Expression in the Mammary Gland Stroma Shapes the Tumor Microenvironment Favoring Breast
Tumor Growth and Invasion

Although RARβ possesses, in breast cancer cells, many of the functional characteristics of a tumor
suppressor, RARβ in the tumor stroma has a dominant role in promoting the growth and progression
of mammary epithelial tumors [74]. The mechanism through which stromal RARβ achieves its
tumor-promoting effect probably involves the production of CXCL12/SDF-1 in stroma cells and the
consequent activation of the Src-ErbB2-Akt signaling pathway in the breast cancer cells (Figure 2C).

2.6. Retinoic Acid Induces Cell Differentiation and Downregulates Stemness in a Nontumorigenic Immortalized
Mammary Epithelial Cell Line and a Non-Invasive Breast Cancer Cell line but Does Not Perform These Actions
in Aggressive Breast Cancers

Using MCF12A, a nontumorigenic immortalized mammary epithelial cell line, or T47D,
a non-invasive breast cancer cell line, RA induces genes involved in cell differentiation such as
RUNX1, BMP6, IKZF1 and CAV1, and activates the expression of noncoding RNAs that downregulate
stemness, such as miR-200c [27]. This miRNA targets and suppresses the protein kinase PKCζ,
a protein that has a pivotal role in directing the asymmetric division of mammalian stem cells to
sustain the stem cell pool [75–77]. PKCζ overexpression promotes breast cancer invasiveness and
metastasis [78]. However, the triple-negative breast cancer cell line MDA-MB-231 does not respond
with cell differentiation and downregulation of stemness to RA treatment [27].

Retinoic acid treatment of the nontumorigenic, immortalized mammary epithelial cell line,
MCF12A and the non-invasive breast cancer cell line T47D induces the association of the RA nuclear
receptor RARβ with a methylcytosine dioxygenase (TET2) [27]. The TET protein family has a crucial
role in DNA demethylation by catalyzing the conversion of the modified genomic base 5-methylcytosine
into 5-hydroxymethylcytosine (5hmC), thereby activating the target gene expression [79]. Expression of
TET2 occurs in the nontumorigenic mammary epithelial cell line MCF12A and also in the non-invasive
breast cancer cell line T47D, but repression occurs in aggressive breast cancers [27] (Figure 2D).

Retinoic acid enhanced the nuclear localization of RARβ and TET2, whereas knockdown of RARβ
blocked RA mediated TET2 nuclear localization and substantially increased TET2 in the cytoplasm
fraction. In contrast to nontumorigenic MCF12A and non-invasive breast cancer cell line T47D,
TET2 was predominantly localized in the cytoplasm in aggressive triple-negative breast cancer cell
line MDA-MB-231, which is deficient in endogenous RARβ expression. Re-expression of RARβ in
MDA-MB-231 cells relocalized TET2 to the nucleus, and the nuclear TET2 level was further enhanced
by RA treatment [27].

2.7. Retinoic Acid Blocks the Progesterone Induction of Cytokeratin-5 Expressing Breast Cancer Stem Cells

Half of estrogen receptor-positive breast cancers contain a subpopulation of cytokeratin-5
expressing cells that are therapy-resistant and exhibit increased cancer stem cell properties induced by
progesterone. Retinoic acid, through RARα or RARγ, blocks progesterone induction of cytokeratin-5
expression and stemness [80].

3. Janus Faces of RA in Other Tissues

Promotion of either stemness or cell differentiation by the RA signaling pathway also has been
observed in pluripotent stem cells, the neural system, the hematopoietic system, colorectal cancer,
hepatocellular carcinoma, pancreatic cancer, ovarian cancer, spermatogenesis, and regeneration of
tissues, among others.
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3.1. Retinoic Acid Sustains Pluripotency and Suppresses Differentiation of Human Induced Pluripotent
Stem Cells

Short-time treatment (24 h) with 0.5 µM RA antagonizes cell differentiation sustaining and
improving pluripotency. In these conditions, RA inhibits the Wnt canonical pathway and positively
modulates the Akt-mTOR signaling pathway.

3.2. Retinoic Acid Induces Stemness or Differentiation in the Neural System

Although RA facilitates differentiation of neurons at the expense of proliferation during
neurogenesis [81,82], recent studies have revealed that RA induces proliferation in early neurogenesis
in the developing mouse cerebral cortex [83], in the adult hippocampus [28], and also in stem-like
glioma cells [29].

3.2.1. Retinoic Acid Induces Proliferation in Cerebral Cortex Early Neurogenesis

Cerebral cortex early neurogenesis is achieved by a proper balance between proliferation and
differentiation of progenitor cells. The first progenitors formed in the cortical plate are radial glial cells
which generate neurons either directly, or through an indirect mechanism involving the production of
intermediate neuronal progenitors, which then give rise to neurons. In the absence of RA, the radial
glial cells proliferate less and prematurely produce neurons, leading to their depletion. Furthermore,
the lack of RA impairs the generation of intermediate neuronal progenitors, producing a deficit in
projection neurons and microcephaly [83].

3.2.2. Retinoic Acid Induces Proliferation in Adult Neurogenesis in the Hippocampus

Neural stem and progenitor cells located in the hippocampus drive adult neurogenesis.
The proliferation of these cells is essential to maintain stem cell populations and produce new neurons.
A significant departure from the dogma that RA acts mainly to promote neuronal differentiation
has been the finding that RA signaling increases proliferation of neural stem and progenitor cells
in the adult rodent hippocampus. An increase of expression of the hypoxia-inducible factor-1α
(HIF1α) and its transcriptional target vascular endothelial growth factor-A (VEGFA) mediate the
proliferative effect of RA [28]. This observation broadens RA’s function beyond its well-described role
in neuronal differentiation.

3.2.3. Retinoic Acid Induces Stemness Rather Than Differentiation in Stem-Like Glioma Cells

In cells that display stem-like properties isolated and expanded from different gliomas, RA exerted,
in general, a proproliferative and prosurvival effect mediated by RARα and RARγ [29]. Only one
glioblastoma multiforme derived cell line (T1338), and a subpopulation of another (T1389), displayed
neural differentiation in response to RA [29]. Since SOX2 is a master regulator of stemness in stem-like
glioma cells, the effect of RA on SOX2 expression has been determined. Treatment with 1 µM RA almost
abrogated SOX2 expression in T1338, where RA displayed neural differentiation, but increased SOX2
levels in T1440, T1452, and T1464, where RA exerted a proproliferative and prosurvival effect [29].

3.3. Retinoic Acid Induces Stemness or Differentiation in the Hematopoietic System

3.3.1. Retinoic Acid Prevents Differentiation of Dormant Primitive Hematopoietic Stem Cells and
Induces Differentiation of More Mature Blood Cells

In the hematopoietic system, RA prevents differentiation of primitive stem cells into a more mature
population [84], and the opposite occurs in more differentiated blood cells and certain leukemias,
in which RA displays prodifferentiation effects [85,86]. Hematopoietic stem cells are unique in their
capacity to self-renew and replenish the entire blood system upon transplantation. Hematopoietic
stem cells give rise to a pool of multipotent progenitors, which generate lineage-restricted progenitors,
and finally, mature effector cells. A subpopulation of hematopoietic stem cells called dormant stem
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cells is characterized by an extremely low in vivo proliferation history with only approximately five cell
divisions per lifetime in a healthy mouse [30]. These cells represent a small fraction of the hematopoietic
cells in the murine bone marrow but harbor the highest long-term reconstitution potential and are
reversibly activated in response to stress signals. High expression of a RA program is characteristic of
dormant hematopoietic stem cells. Treatment with RA significantly attenuates the c-Myc upregulation
and antagonizes stress-induced activation of these cells [30].

3.3.2. Variable Effects of RA on Tumor Immunosuppression

Immature myeloid cells play an essential role in tumor-induced immunosuppression. These cells
accumulate in large numbers in tumor-bearing hosts and directly inhibit T-cell functions. In vivo
administration of RA dramatically reduced the presence of immature myeloid cells in all tested tumor
models, inducing their differentiation into mature dendritic cells, macrophages, and granulocytes [87].
However, aldehyde dehydrogenase expression and the subsequent production of retinoic acid by
dendritic cells, macrophages, eosinophils, and epithelial cells, seems essential in regulatory T cell
induction. Regulatory T cells promote immune tolerance to tumor cells in multiple types of cancer [88].

3.4. RARγ Inhibits Colorectal Cancer Tumorigenesis and Metastasis, Restricting the YAP Signaling Pathway

We have observed that RA activates the YAP signaling pathway in triple-negative MDA-MB-231
breast cancer cells, but inhibits this pathway in triple-negative MDA-MB-468 breast cancer cells [25].
In vitro and in vivo studies showed that silencing RARγ expression enhanced colorectal cancer cell
growth significantly, with increased migration, invasion, and metastasis, whereas ectopic expression of
RARγ did the opposite, suggesting that RARγ functions as a tumor suppressor in colorectal cancer [32].
RARγ interacts with YAP in the cytoplasm of colon cancer cells and the interaction between RARγ and
YAP could be significantly enhanced after RA treatment. RARγ promotes the binding of the Lats1 kinase
to YAP and its phosphorylation. Phosphorylated YAP is retained in the cytoplasm, and the YAP-TEAD
transcriptional activity is inhibited. YAP acts as an oncogenic regulator for cancer development.
Increased expression and activity of YAP is associated with the growth, metastatic potential, and poor
prognosis of several cancer types, including liver cancer and colorectal cancer [89–91].

3.5. Cytoplasmic Accumulation of RARγ in Hepatocellular Carcinoma Cells Plays an Oncogenic Role Via
Nongenomic Activation of Akt-NFκB Signaling

Levels of RARγ were significantly elevated in tumor tissues from a majority of human
hepatocellular carcinoma and in hepatocarcinoma cell lines. Overexpression of RARγ promoted
colony formation by hepatocarcinoma cells in vitro and the growth of hepatocarcinoma xenografts
in animals [33]. In HepG2 cells, transfection of RARγ enhanced, whereas downregulation of RARγ
expression by siRNA impaired, the effect of RA on inducing hepatocarcinogenesis. RARγ interacts
with the p85α regulatory subunit of phosphatidylinositol 3-kinase (PI3K). The interaction between
RARγ and p85α resulted in activation of Akt and NF-κB, critical regulators of the growth and survival
of cancer cells [33].

3.6. Retinoic Acid Induces Cell Differentiation and Reduces Stem Cell Markers in Pancreatic Cancer Cells

Both RA and vitamin A concentrations are reduced in pancreatic ductal adenocarcinoma tissue
compared to their normal counterparts, and the expression of RAR α and β, as well as RXR α and β,
are down-regulated [92]. This reduced expression of retinoid receptors correlates with a reduction of
the expression of some markers of differentiation such as carbonic anhydrase II and downregulation of
E-cadherin expression involved in epithelial-to-mesenchymal transition [92].

Herreros-Villanueva et al. [93] using several pancreatic cancer cell lines, reported that RA treatment
reduced the sphere-forming capacity as well as the size of spheres formed and the expression of
pancreatic stem cell markers CD24, CD44, CD133, and aldehyde dehydrogenase 1. Essential stemness
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genes, such as SOX2 decreased. Surprisingly, however, the expression of the proto-oncogene c-Met
was significantly increased in all the pancreatic cancer cell lines studied.

The accumulation of prostaglandin E2 (PGE2) by inhibition of the degradation enzyme
15-hydroxyprostaglandin dehydrogenase (15-PGDH) induces progression of pancreatic ductal
adenocarcinoma (PDAC) [34]. Genetic deletion of 15-PGDH showed PGE2 accumulation, enhanced
CYP26A1 expression, and in consequence, RA depletion in the pancreas. RA depletion results in
PDAC with high levels of Aldh1, Sox2, and Nanog in tumor cells, with growth and sphere formation.
RA replacement suppresses Aldh1 signaling in tumor cells and tumor progression in pancreatic
adenocarcinoma (Figure 3).

Biomolecules 2019, 9, 567 10 of 17 

Herreros-Villanueva et al. [93] using several pancreatic cancer cell lines, reported that RA 
treatment reduced the sphere-forming capacity as well as the size of spheres formed and the 
expression of pancreatic stem cell markers CD24, CD44, CD133, and aldehyde dehydrogenase 1. 
Essential stemness genes, such as SOX2 decreased. Surprisingly, however, the expression of the 
proto-oncogene c-Met was significantly increased in all the pancreatic cancer cell lines studied. 

The accumulation of prostaglandin E2 (PGE2) by inhibition of the degradation enzyme 15-
hydroxyprostaglandin dehydrogenase (15-PGDH) induces progression of pancreatic ductal 
adenocarcinoma (PDAC) [34]. Genetic deletion of 15-PGDH showed PGE2 accumulation, enhanced 
CYP26A1 expression, and in consequence, RA depletion in the pancreas. RA depletion results in 
PDAC with high levels of Aldh1, Sox2, and Nanog in tumor cells, with growth and sphere formation. 
RA replacement suppresses Aldh1 signaling in tumor cells and tumor progression in pancreatic 
adenocarcinoma (Figure 3).  

 
Figure 3. Depletion of RA by an increase of CYP26 expression due to an accumulation of 
prostaglandin E2 (PGE2) results in high levels of ALDH1, Sox2, and Nanog in tumor cells with growth 
and sphere formation (A). Retinoic acid replacement suppresses ALDH1 signaling in pancreatic 
ductal adenocarcinoma and induces cell differentiation (B). 

3.7. Retinoic Acid Downregulates ALDH1-Mediated Stemness and Inhibits Tumor Formation in Ovarian 
Cancer Cells. 

ALDH1 activity is positively correlated with stemness in ovarian cancer cells according to 
measures such as sphere formation and stem cell marker expression, as well as tumorigenesis in a 
mouse xenograft model. Retinoic acid reduced ALDH1 expression, suppressed tumor formation, and 
inhibited sphere formation, cell migration, and invasion in ALDH1-abundant ovarian cancer cells 
[94]. 

3.8. Retinoic Acid Induces Cell Differentiation and Proliferation During Spermatogenesis. 

Cell differentiation during spermatogenesis involves four transitions: spermatogonial 
differentiation, meiotic initiation, spermatid elongation, and sperm release. Retinoic acid induces all 
four transitions [95] (Figure 4). Retinoic acid from Sertoli cells induces the premeiotic transitions. 

Figure 3. Depletion of RA by an increase of CYP26 expression due to an accumulation of prostaglandin
E2 (PGE2) results in high levels of ALDH1, Sox2, and Nanog in tumor cells with growth and
sphere formation (A). Retinoic acid replacement suppresses ALDH1 signaling in pancreatic ductal
adenocarcinoma and induces cell differentiation (B).

3.7. Retinoic Acid Downregulates ALDH1-Mediated Stemness and Inhibits Tumor Formation in Ovarian
Cancer Cells

ALDH1 activity is positively correlated with stemness in ovarian cancer cells according to
measures such as sphere formation and stem cell marker expression, as well as tumorigenesis in a
mouse xenograft model. Retinoic acid reduced ALDH1 expression, suppressed tumor formation,
and inhibited sphere formation, cell migration, and invasion in ALDH1-abundant ovarian cancer
cells [94].

3.8. Retinoic Acid Induces Cell Differentiation and Proliferation During Spermatogenesis

Cell differentiation during spermatogenesis involves four transitions: spermatogonial
differentiation, meiotic initiation, spermatid elongation, and sperm release. Retinoic acid induces all
four transitions [95] (Figure 4). Retinoic acid from Sertoli cells induces the premeiotic transitions. Once
germ cells enter meiosis, pachytene spermatocytes produce RA to coordinate the two postmeiotic
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transitions [95]. Retinoic acid levels fluctuate in the testis to regulate the different transitions during
spermatogenesis [95].
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Figure 4. During spermatogenesis, RA controls spermatogonial proliferation and differentiation,
meiotic initiation, spermatid elongation, and sperm release. Spermatogonial stem cells undergo
self-renewal or proliferate and differentiate to enter meiosis in response to RA.

Spermatogonial stem cells remain as stem cells (self-renewal) or proliferate and differentiate to
entering meiosis in response to RA. A gene induced by RA, Stra8 (stimulated by retinoic acid 8),
induces spermatogonial differentiation, meiotic initiation, and proliferation of both spermatogonial
stem cells and induced differentiating spermatogonia [35].

A fraction of spermatogonia undergoes neither spermatogonial differentiation nor meiotic initiation
in response to RA, ensuring that a reservoir of undifferentiated spermatogonia is maintained throughout
the animal’s reproductive lifetime [96]. Spermatogonia and their precursors prospermatogonia
exhibit a different capacity to respond to RA with at least two underlying causes. First, progenitor
spermatogonia are prevented from responding to RA by the catabolic activity of CYP26 enzymes.
Second, a smaller subset of undifferentiated spermatogonia enriched for spermatogonial stem cells
exhibits catabolism-independent RA insensitivity [97]. Retinoic acid receptor α balances proliferation
and differentiation of spermatogonia, and controls genome integrity during meiosis, coordinating
proper spatial and temporal development of germ cells throughout spermatogenesis [98].

3.9. Retinoic Acid Controls the Regeneration of Tissues in the Adult Organism

Retinoic acid coordinates salamander limb regrowth after amputation [99]. Recently, Kim et
al. reported a mechanism of tissue regeneration in adult organisms consisting of activation of the
damage sensor TLR3 receptor and the consequent induction of intrinsic synthesis of RA [36]. Using
an adult model of regeneration, where stem cells regenerate de novo hair follicles after a skin injury,
they propose the following hypothesis: damage of tissue might induce the release of double-stranded
RNA (dsRNA) that activates the TLR3 receptor and its downstream pathways STAT3 and NF-kB.
Both pathways induced the expression of aldehyde dehydrogenase1A3 (ALDH1A3), which converts
retinaldehyde to RA [100]. Either RA or dsRNA, but particularly both of them together, robustly
increased ALDH1A3 protein expression [36]. Under these conditions, maximal upregulation of stem
cell markers and downregulation of differentiation markers occur. Retinoic acid receptors (RAR) are
essential in responding to RA and enhancing regeneration. In both, humans and mice, the dsRNA-RA
axis is a conserved pathway for promoting regeneration [36]. An interesting question is whether a
similar mechanism can activate tumor regeneration since TLR3 stimulation facilitates stem cell-like
phenotypes in breast cancer [101–104].
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4. Conclusions

The balance between self-renewal and differentiation of stem cells is crucial for development,
regeneration in the adult organism, and cancer progression. Cancer progression involves a gradual
loss of the differentiated phenotype and the acquisition of progenitor and stem cell-like features [105].
Retinoic acid is a well-known inductor of cell differentiation in many experimental models and has been
effectively used in the treatment of acute promyelocytic leukemia. However, our present knowledge
broadens the function of RA to include induction of cell stemness and progenitor cell proliferation.
In consequence, RA can produce protumorigenic and anti-tumorigenic effects in different cancer cell
types. The antagonistic effects of RA are not surprising since RA can activate more than one thousand
different genes in two lines of triple-negative breast cancer cells [24]. RA also can promote extragenomic
actions [23]. Moreover, the effect of RA on tumor stromal cells can shape the tumor microenvironment
favoring tumor growth and invasion [74]. Finally, RA controls tumor immunosuppression in opposing
ways, reducing immature myeloid cells and inducing regulatory T cells [87,88].

We need to know the critical signaling pathways controlled by RA that determine the final balance
to stemness or differentiation. The main goal is to find cancer therapies able to block stemness and
promote cell differentiation. Among the pathways promoting stemness controlled by RA that could
be particularly significant are the VEGF signaling pathway [26,28,68,69], the Src-YAP-IL6 axis [25],
and the activation of sensors of cell damage, such as TLR3 [36].

Retinoic acid controls the beginnings, transitions, and endings. With his two faces, RA looks to
the past (stemness) and the future (differentiation), deciding the cell fate.
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