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Abstract Background: Multiple studies have compared the performance of artificial intelligence

(AI)ebased models for automated skin cancer classification to human experts, thus setting the

cornerstone for a successful translation of AI-based tools into clinicopathological practice.
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Objective: The objective of the studywas to systematically analyse the current state of research on

reader studies involving melanoma and to assess their potential clinical relevance by evaluating

threemain aspects: test set characteristics (holdout/out-of-distribution data set, composition), test

setting (experimental/clinical, inclusion ofmetadata) and representativeness of participating clini-

cians.

Methods: PubMed,Medline and ScienceDirect were screened for peer-reviewed studies published

between 2017 and 2021 and dealing with AI-based skin cancer classification involving melanoma.

The search terms skin cancer classification, deep learning, convolutional neural network (CNN),

melanoma (detection), digital biomarkers, histopathology and whole slide imaging were com-

bined. Based on the search results, only studies that considered direct comparison of AI results

with clinicians and had a diagnostic classification as their main objective were included.

Results: A total of 19 reader studies fulfilled the inclusion criteria. Of these, 11 CNN-based ap-

proaches addressed the classification of dermoscopic images; 6 concentrated on the classification

of clinical images, whereas 2 dermatopathological studies utilised digitised histopathological

whole slide images.

Conclusions: All 19 included studies demonstrated superior or at least equivalent performance of

CNN-based classifiers compared with clinicians. However, almost all studies were conducted in

highly artificial settings based exclusively on single images of the suspicious lesions.Moreover, test

setsmainly consisted of holdout images and did not represent the full range of patient populations

and melanoma subtypes encountered in clinical practice.

ª 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Although malignant melanoma (MM) accounts for only

4% of skin cancers, it is responsible for about 75% of all

skin cancereassociated deaths. Early detection and

diagnosis are critical for survival chances of affected
patients [1].

Early diagnosis, however, may be difficult, as MM and

atypical melanocytic nevi frequently present with

morphological overlap. Although dermoscopy improves

diagnostic accuracy comparedwith naked eye examination

[2], even specialists rarely achieve sensitivity levels above

80% [3]. Beyond that, a significant variance depending on

training and professional experience can be observed [4].
In case of a suspected MM, skin biopsy is routinely

performed to enable histopathological examination.

Although histopathological analysis is currently

considered the gold standard for skin cancer diagnosis,

it is time-consuming, labour-intensive and can also be

inconclusive in borderline cases. Previous studies

revealed a discordance between individual pathologists

for MM classification of up to 25% [5,6].
Against this backdrop, accurate distinction between

benign and malignant skin lesions as well as the exact

classification of skin cancer types through digital bio-

markers (DBs) is of great interest to reduce the number

of missed MM as well as unnecessary excisions. DBs are

data-driven indicators that provide information about

the characteristics of a lesion and may predict health-

related outcomes.
Convolutional neural networks (CNNs) are deep

neural networks with an architecture specifically designed
for image analysis that are commonly trained via super-

vised learning. This means that CNNs use labelled data,

for example dermoscopic images with their correspond-

ing diagnosis/ground truth, to learn a relationship be-

tween the input data and the labels. Based on that, CNNs

are able to apply learned operations to unknown images

and classify them based on the extracted features.

Because diagnosis in clinical dermatology and dermato-
pathology is largely based on the recognition of visual

patterns, the use of CNNs could help to develop addi-

tional and/or improved clinically meaningful DBs [7].

This systematic review presents state of the art arti-

ficial intelligence (AI)-based automated skin cancer

classification involving MM and comparing AI results

with human experts. The included studies have been

reviewed with particular reference to the clinical rele-
vance of the reported results, thereby reflecting the

actual impact and the forthcoming challenges expected

with the implementation of AI-based classifiers into

clinicopathological routine.
2. Material and methods

2.1. Search strategy

In 2017, Esteva et al. [8] first reported on a deep learning

CNN-based image classifier that outperformed 21
board-certified dermatologists in the classification of

clinical and dermoscopic images. We therefore screened

PubMed, Medline and ScienceDirect for peer-reviewed

studies published in English between 2017 and 2021

http://creativecommons.org/licenses/by-nc-nd/4.0/
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(search terms last accessed on 02/17/2021). The

following search terms were combined: skin cancer

classification, deep learning, convolutional neural net-

work(s), melanoma (detection), digital biomarkers,

histopathology and whole slide imaging (for a detailed

overview of the comprehensive search strategy, see

Supplementary Table 1).

2.2. Study selection

Search results were screened manually. Only publications

that fulfilled the inclusion criteria listed in the following

were selected (for a detailed overview of the systematic

search procedure in accordance with PRISMA, see

Supplementary Material 2 and 3). First, only studies that

contained direct comparisons of AI classifiers with

human experts were included, as these approaches better

demonstrate the potential value of AI-based classifiers in
clinicopathological practice. Non-comparative ap-

proaches (e.g. Refs. [9e12]) were excluded. Furthermore,

only studies involving the diagnosis of MM were evalu-

ated. As MM is the skin cancer subtype that is associated

with the most skin cancererelated deaths, we discarded

studies that completely excluded the diagnosis of MM

(e.g. Ref. [13]). Finally, only studies that had a diagnostic

classification as their main task were included. Studies
concentrating on prognostic factors such as therapy

response or long-term survival were explicitly not

addressed (e.g. Refs. [14,15]). Data were extracted from

peer-reviewed articles exclusively. Data quality was

assessed independently by two reviewers.

2.3. Study analysis

The included studies were reviewed with particular refer-
ence to the potential clinical relevance of the reported re-

sults by assessing threemain aspects: test set characteristics

(holdout/out-of-distribution data set, composition), test

setting (experimental/clinical, inclusion of metadata) and

representativeness of the included clinicians.

Holdout data refer to data obtained from the same

overall data set as the data used for training and vali-

dation of the algorithm. Thus, the test set follows the
same probability distribution as the training set.

Conversely, out-of-distribution (OOD) data do not

follow the training distribution and are often referred to

as an external test set (e.g. from external clinics).

2.4. Study performance metrics

In this systematic review, we focus on the performance

metrics accuracy, sensitivity and specificity.
Accuracy is a meaningful metric if different classes

within the test set are more or less evenly distributed and

if the overall performance is of interest and not the

performance for a specific class. Accuracy indicates

the percentage of correctly classified skin lesions, that is
the percent ratio between the total number of correctly

classified lesions and the overall number of examined

lesions.

Sensitivity and specificity are not influenced by class

imbalances and better reflect the performance for a spe-

cific class. However, both metrics require a dichotomous

classification, where only one positive and one negative

class are considered (e.g. melanoma vs. melanocytic
nevus, benign vs. malignant or one class vs. the rest in a

multiclass classification setting). Sensitivity is calculated

based on the actual positive cases; it is the percent ratio

between cases that are correctly assigned as positive in

comparison with the overall number of positive cases

contained in the data set. By contrast, specificity is

determined on the basis of the actual negative cases; it is

the percent ratio between cases correctly allocated as
negative and all negative cases of the data set.
3. Results

A total of 19 comparative studies (since Esteva et al.’s [8]
seminal article) were published that fulfilled the inclu-

sion criteria. Most of the studies focused on dermo-

scopic images (n Z 11) [4,7,16e24], followed by clinical

image (nZ 6) [25e30] and histopathological whole slide

image (WSI) studies (n Z 2) [31,32] (see Fig. 1). In the

following, the term histopathological WSI refers to

digitised haematoxylin-eosin (H&E)estained tissue sec-

tions processed with specialised slide scanners.
3.1. Automated skin cancer classification of dermoscopic

images

Eleven studies based on the classification of dermo-

scopic images fulfilled the inclusion criteria (see Table
1). Out of these, eight publications were based on a bi-

nary classification system. Supplementary Table 4 con-

trasts the training and testing procedures of these

approaches.

Brinker et al. [16] fine-tuned an algorithm for the

binary discrimination between MM and melanocytic

nevus. To compare the classifier performance with re-

sults obtained by human experts, 157 dermatologists
indicated their corresponding management decision

(biopsy or further treatment vs. reassurance of the pa-

tient) for 100 test images. This is how the authors

compiled the most comprehensive binary dermoscopic

reader study to date. Overall, the CNN outperformed

136 of 157 dermatologists across different levels of

experience in terms of average specificity and sensitivity.

Subsequently, Brinker et al. [17] carried out a follow-
up study comparing the diagnostic performance of the

CNN with 144 dermatologists. In that study, only im-

ages with a histology-proven groundtruth (i.e. images of

lesions suspicious for MM) were taken into consider-

ation, thus presumably increasing the overall difficulty



Fig. 1. Categorisation of the included studies based on the type of input data. Based on the input data, the included studies are grouped into

three categories: those based on dermoscopic images [4,7,16e24], those based on clinical images [25e30] and those based on histo-

pathological WSIs [31,32]. WSI, whole slide image.
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of the test set. Nonetheless, for the first time, CNN-

based MM classification was significantly superior to
junior and board-certified dermatologists (82.3% vs.

68.9%/63.2% sensitivity and 77.9% vs. 58.0%/65.2%

specificity, p < 0.001).

Yu et al. [19] developed an algorithm focussing on a

binary classification (MM vs. melanocytic nevus) of le-

sions of the acral skin. The authors compared their

CNN with the results achieved by two experienced

dermatologists as well as with two non-trained general
physicians. The CNN achieved mean sensitivity, speci-

ficity and accuracy levels that were comparable with

those of the experienced dermatologists (92.6%, 71.8%

and 81.9% vs. 96.6%, 67.0% and 81.4%), thus illustrating

the potential of CNN-based automated melanoma

detection for special subtypes such as acral MM on the

hands and feet.

Marchetti et al. [20] published the first dermoscopic
comparative study that used an ensemble approach to

combine the classifier predictions of 25 participating

teams of the International Symposium on Biomedical

Imaging (ISBI) 2016 challenge. By investigating five

different fusion approaches, the authors demonstrated

that the top fusion approach was able to outperform

eight experienced dermatologists. This was significant

for both the binary classification of malignancy (at
dermatologists’ sensitivity of 82%: 76% vs. 59% speci-

ficity, p Z 0.02) and for the consideration of manage-

ment decisions (at dermatologists’ sensitivity of 89%:

64% vs. 47% specificity, p Z 0.02). In 2020, Marchetti

et al. [21] proposed a similar reader study in which the

best performing algorithm of the ISBI 2017 challenge

significantly outperformed eight dermatologists and

nine dermatology residents (p < 0.001).
Haenssle et al. [4] were the first to give additional

clinical information to the clinicians within the reader

study. The authors proposed a binary classification

approach for automated MM classification and

compared the diagnostic accuracy of the CNN with the
results obtained by 58 dermatologists. The study was

divided into two levels. In level I, participants reviewed
the test set online and indicated their corresponding

diagnosis (MM vs. melanocyctic nevus) as well as

management decision (exicision or short term follow-up

vs. no action) based solely on one dermoscopic image. In

level II, the same dermatologists diagnosed the identical

test set, but with additional clinical information and

close-up images. Although additional information

improved the diagnostic accuracy of the dermatologists,
the CNN still significantly outperformed the average of

the participants (at dermatologists’ sensitivity of 88.9%:

82.5% vs. 75.7% specificity, p < 0.01).

In 2020, Haenssle et al. [18] replicated their previous

reader study by comparing an updated version of their

CNN with the results achieved by 96 dermatologists. In

that study, they included a broader spectrum of disease

classes (n Z 10) which had to be classified into
(pre)malignant and benign lesions. When fixing the

specificity of the CNN at the dermatologists’ mean

specificity for their management decision in level II

(80.4%), the sensitivity of the CNN was almost equal to

that of human raters (95.0% vs. 94.1%).

Moreover, Haenssle et al. [24] proposed a reader

study that focused exclusively on suspicious lesions of

the face and scalp. In level II of that study, the CNN
significantly outperformed 64 human experts in terms of

management decision (at dermatologists’ specificity of

69.4%: 96.2% vs. 84.2% sensitivity, p < 0.001). This

difference resulted in an average of 6.2 more malignant

lesions missed by dermatologists compared with the

CNN (CNN: 2/52, dermatologists’ mean: 8.2/52), thus

outlining that the potential of CNN-based automated

skin cancer classification can also be extended to special
anatomic sites such as the face and scalp.

Three dermoscopic approaches expanded on the bi-

nary perspective (e.g. MM vs. melanocytic nevus, benign

vs. malignant) presented by Brinker et al. [16,17], Yu

et al. [19], Marchetti et al. [20,21] and Haenssle et al.



Table 1
Overview reader studies based on dermoscopic images.

Reader study Comparison with Scope of the reader study test set Metadata Origin of the reader study test set Setting Classification task Results

Brinker et al. [16] 157 dermatologists

- 151 university hospitalebased from

12 university hospitals in Germany:

- 88 junior clinicians

- 15 attendings

- 45 senior clinicians

- 3 chief clinicians

- 6 dermatologists in private practice

100 images, randomly selected out

of 20735 images available at ISIC

n ISIC image archive (holdout) e Binary: melanoma/

melanocytic nevi

CNN outperformed

136 out of 157

dermatologists

Brinker et al. [17] 144 dermatologists from 9 university

hospitals in Germany

- 92 junior clinicians

- 52 board-certified dermatologists

6 subsets consisting of 134 images

each, 804 images in total

n ISIC image archive (holdout) e Binary: melanoma/

melanocytic nevi

Significant

superiority of the

CNN

Yu et al. [19] 4 participants:

- 2 general physicians

- 2 experienced dermatologists

2 subsets consisting of 362 images

each, 724 images total

n Severance Hospital in the Yonsei

University Health System, Seoul,

Korea (holdout)

Dongsan Hospital in the

Keimyung University Health

System, Daegu, Korea (holdout)

e Binary: acral

melanoma/

melanocytic nevi

Comparable

performance

Marchetti et al. [20] 8 experienced dermatologists from 4

different countries

Randomly selected 100 images out

of 379 images

n ISBI 2016 challenge, ISIC image

archive (holdout)

e Binary: malignant/

benign; biopsy/

observation or

reassurance

Significant

superiority of the

CNN ensemble

Marchetti et al. [21] 17 dermatologists

- 8 dermatologists from 4 countries

- 9 dermatology residents from the

United States

Randomly selected 150 images out

of 600 images

n ISIC image archive (holdout) e Binary: melanoma/

non-melanoma;

biopsy/ observation

Significant

superiority of the

CNN

Haenssle et al. [4] 58 dermatologists from 17 countries

- 17 beginners

- 11 skilled

- 30 experts

Selected 100 images with increased

difficulty out of 300 images

(I) dermoscopy only

(II) in addition: clinical

information and close-up images

y Department of Dermatology,

University of Heidelberg, Germany

(OOD)

e Binary: melanoma/

melanocytic nevi;

excision or short-

term follow-up/ no

action

Significant

superiority of the

CNN

Haenssle et al. [18] 96 dermatologists

- 17 beginners

- 29 skilled

- 40 experts

100 images with increased difficulty

(I) dermoscopy only

(II) in addition: clinical

information and close-up images

y Department of Dermatology,

University of Heidelberg, Germany

(OOD)

e Binary: (pre)

malignant/ benign;

excision or

treatment/ follow-up

or no action

Comparable

performance

(continued on next page)
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ü
ller

et
a
l.
/
E
u
ro
p
ea
n
J
o
u
rn
a
l
o
f
C
a
n
cer

1
5
6
(
2
0
2
1
)
2
0
2e

2
1
6

2
0
7



Table 1 (continued )

Reader study Comparison with Scope of the reader study test set Metadata Origin of the reader study test set Setting Classification task Results

- 10 no information provided
Haenssle et al. [24] 64 dermatologists

- 9 beginners

- 20 skilled

- 30 experts

- 5 no information provided

100 images of face and scalp lesions

in total

(I) dermoscopy only

(II) in addition: clinical

information and close-up images

y Department of Dermatology,

University of Heidelberg, Germany

(OOD),

Department of Dermatology

Hospital Thalkirchner Street,

Munich, Germany (OOD),

Department of Dermatology,

Medical University Graz, Austria

(OOD),

First Department of Dermatology,

Aristotle University, Thessaloniki,

Greece (OOD),

Dermatology Office Based Clinic

of Dermatology, Konstanz,

Germany (OOD)

e Binary: malignant/

benign; excision or

treatment/ follow-up

or no action

Significant

superiority of the

CNN

Tschandl et al. [22] 511 participants from 63 countries

- 283 board-certified dermatologists

- 118 dermatology residents

- 83 general practitioners

- 27 no information provided

Randomly selected 30 images per

participant out of 1511 images

n HAM10000 data set, ISBI 2018

challenge, ISIC image archive

(holdout), additional images from

Turkey, New Zealand, Sweden and

Argentina (OOD)

e Multiclass (7) Significant

superiority of the

CNN

Maron et al. [23] 112 dermatologists

- 108 university hospitalebased from

13 university hospitals in Germany:

- 67 junior clinicians

- 12 attendings

- 28 senior clinicians

- 1 chief physician

- 4 dermatologists in private practice

6 subsets consisting of 50 images,

300 images in total

n HAM10000 data set (holdout) e Binary: malignant/

benign;

multiclass (5)

Significant

superiority of the

CNN

Tschandl et al. [7] 95 participants from 29 countries:

- 62 board-certified dermatologists

- 12 dermatology residents

- 17 general practitioners

- 4 others

Randomly selected 50 images per

participant out of 2072 images

n Primary skin cancer clinic in

Queensland, Australia (holdout),

Department of Dermatology of the

Medical University of Vienna,

Austria (OOD), additional images

from dermatologists from Sweden,

Italy, Austria, France, Turkey,

Germany (OOD)

e Multiclass (8) Comparable

performance

Metadata (additional information for readers beyond image input, e.g. age, gender, localisation of the suspicious lesion).

y, yes.

n, no.

c, clinical setting.

e, experimental setting.

CNN, convolutional neural network.

OOD, out of distribution.

ISBI, International Symposium on Biomedical Imaging.
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[4,18,24], by carrying out multiclass classification tasks

which covered more fine-grained diagnoses (see Table 1)

[7,22,23]. Supplementary Table 4 outlines similarities

and differences of these multiclass approaches with re-

gard to individual training and testing procedures.

In 2019, Tschandl et al. [22] compared the results ob-

tained by 139 algorithms in the ISBI 2018 challenge with

those obtained by 511 human readers, including 283
board-certified dermatologists, 118 dermatology

residents and 83 general practitioners. This comparative

approach constitutes the most comprehensive multiclass

reader study to date. Regarding the discrimination be-

tweenMMand six other skin diseases (for a more detailed

specification of the classes, see Supplementary Table 7),

the algorithms achieved an average of 19.9 correct di-

agnoses out of 30with participants achieving an average of
17.9 correct diagnoses (p < 0.0001).

Maron et al. [23] proposed a similar reader study to

Tschandl et al. [22] by developing a classifier to differ-

entiate between MM and four other skin disease classes

(see Supplementary Table 7). In that study, the CNN

significantly outperformed 112 dermatologists from

different levels of experience in the correct classification

of images into five diagnostic categories (at dermatolo-
gists’ sensitivity of 56.5%: 98.8% vs. 89.2% specificity,

p < 0.001).

Tschandl et al. [7] were the first to propose a reader

study integrating two different image types. They com-

bined a CNN trained with dermoscopic images and a

CNN trained on clinical close-up images into a com-

bined CNN (cCNN). Focussing on amelanotic skin le-

sions, the authors showed that the cCNN was able to
differentiate between MM and seven other skin diseases

(see Supplementary Table 7) with comparable perfor-

mance with that of 95 human raters (at participants’

specificity of 51.3%: 80.5% vs. 77.6% sensitivity).
3.2. Automated skin cancer classification of clinical

images

A total of six CNN-based classification approaches

using clinical images fulfilled the inclusion criteria of this

systematic review (see Table 2). Supplementary Table 5
outlines the training and testing procedure of each in-

dividual approach.

Fujisawa et al. [25] developed an algorithm for the

binary discrimination between malignant and benign

lesions, while simultaneously enabling a more fine-

grained multiclass classification into MM and 13 other

skin diseases (see Supplementary Table 7). The authors

compared the classifier results with those of 13 board-
certified dermatologists as well as nine dermatology

trainees. The CNN achieved accuracy levels that

significantly outperformed both groups with regard to

binary (92.4% vs. 85.3%/74.4%, p < 0.0001) and multi-

class classification (74.5% vs. 59.7%/41.7%, p < 0.0001).
Jinnai et al. [26] proposed a similar reader study than

Fujisawa et al. [25]. The authors developed an algorithm

for the distinction between malignant and benign skin

lesions as well as for the precise classification into MM

and five other disease classes (see Supplementary Table

7). In comparison with 10 dermatologists and 10

dermatology trainees, the used CNN significantly out-

performed the participants in terms of accuracy for the
binary (91.5% vs. 86.6%/85.3%, p < 0.01) and the mul-

ticlass approach (86.2% vs. 79.5%/75.1%, p < 0.001).

Han et al. [27] also addressed the binary discrimina-

tion between malignant and benign lesions and multi-

class classification. The developed multiclass model

enabled a differentiation into MM and 133 other skin

diseases, therefore incorporating the broadest spectrum

of diagnoses to date (see Supplementary Table 7). For
the binary discrimination, the classifier performance was

comparable with the results obtained by 47 medical

professionals. Regarding the precise classification into

the 134 disease categories, the CNN performed slightly

worse in terms of accuracy (44.8% vs. 49.9%) than two

board-certified dermatologists and two dermatology

residents.

Unlike the previous approaches, Han et al. [28]
developed a model which focused exclusively on the

multiclass discrimination of MM and 11 other skin

diseases (see Supplementary Table 7). Not only did their

model output the diagnosis with the highest probability

for a given image but also give a differential diagnosis

once a defined threshold for any of the 12 considered

disease classes was overcome. Based upon that, an

experimental but more realistic comparison between the
classifier performance and the diagnostic results of 16

dermatologist board members was possible. The algo-

rithm achieved an accuracy of 57.3% and 55.7% on a

holdout and out-of-distribution test set, respectively,

which was comparable with the accuracy obtained by

the dermatologist board members.

Brinker et al. [30] were the first to investigate whether

an algorithm benefits from training on high-resolution
dermoscopic images even for clinical classification

tasks. The authors trained an algorithm with dermo-

scopic images only and compared the classifier perfor-

mance with the results of 145 dermatologists in a binary

classification task on clinical images (MM vs. atypical

melanocytic nevi). At dermatologists’ sensitivity of

68.2%, the CNN achieved a slightly higher, but com-

parable, specificity (68.2% vs. 64.4%). For the first time,
dermatologist-level image classification was achieved on

a clinical image classification task without a specific

training on clinical images.

Han et al. [29] established a direct comparison be-

tween the performance of a CNN-based classifier and

the results obtained by dermatologists for the binary

classification into malignant and benign lesions, as well

as the automated discrimination between MM and 31
other skin diseases (see Supplementary Table 7). The



Table 2
Overview reader studies based on clinical images.

Reader

study

Comparison with Scope of the reader study

test set

Metadata Origin of the reader study

test set

Setting Binary/multiclass Results

Fujisawa et al. [25] 22 dermatologists

- 9 dermatologic trainees

- 13 board-certified

Randomly selected 140

images per participant out

of 1142 images

n University of Tsubuka

Hospital, Japan (holdout)

e Binary: malignant/

benign, multiclass

(14)

Significant superiority of the

CNN

Jinnai et al. [26] 20 dermatologists

- 10 dermatologic trainees

- 10 board-certified

Randomly selected 10 test

samples of 200 images out

of 1114 images

n Dermatologic Oncology in

the National Cancer Center,

Tokyo (holdout)

e Binary:

malignant/ benign,

multiclass (6)

Significant superiority of the

CNN

Han et al. [27] Binary:

47 dermatologists

- 21 board-certified

- 26 dermatology residents

Multiclass:

4 dermatologists

- 2 board-certified

- 2 dermatology residents

Randomly selected 240

images out of 2201 images

n SNU data set (OOD) e Binary: malignant/

benign, multiclass

(134)

Binary: on par performance

Multiclass: comparable, but

slightly worse performance of

the CNN

Han et al. [28] 16 dermatologist board members

- 6 clinicians (>10 years of experience)

- 10 professors

Randomly selected 480

images

1) 260 images of 12

disorders out of 1276

images

2) 220 images of 10

disorders out of 1300

images

n 1) Asan test set (holdout)

2) Edinburgh data set

(OOD)

e Multiclass (12) On par performance

Brinker et al. [30] 145 dermatologists

- 142 university hospitalebased:

- 88 junior clinicians

- 16 attendings

- 35 senior clinicians

- 3 chief clinicians

- 3 dermatologists in private practice

100 images n MClass benchmark

obtained from the MED-

NODE database (OOD)

e Binary:

melanoma/

melanocytic nevi

On par performance
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Table 3
Overview reader studies based on histopathological WSIs.

Reader study Comparison with Scope of the reader

study test set

Metadata Origin of the reader study test set Setting Classification task Results

Hekler et al. [31] 11 pathologists 100 cropped digitised

H&E slides

n Dermatohistopathologic Institute

Dr. D. Krahl, Heidelberg,

Germany (holdout)

e Binary: melanoma/

melanocytic nevi

Significant superiority

of the CNN

Brinker et al. [32] 18 pathologists from 8

different countries, each

with at least 5 years of

experience

100 digitised H&E

slides

n Routine files of 2 expert board-

certified dermatopathologists from

Friedrichshafen, Germany

(holdout)

e Binary: melanoma/

melanocytic nevi

On par performance

Metadata (additional information for readers beyond image input, e.g. age, gender, localisation of the suspicious lesion).

y, yes.

n, no.

c, clinical setting.

e, experimental setting.

CNN, convolutional neural network.

OOD, out of distribution.

WSI, whole slide image.

H&E, haematoxylin-eosin.

Table 2 (continued )

Reader

study

Comparison with Scope of the reader study

test set

Metadata Origin of the reader study

test set

Setting Binary/multiclass Results

Han et al. [29] 1) 65 attending clinicians

2) 44 board-certified dermatologists

1) 40331 images from

10426 cases of 43

disordersa

2) Randomly selected 44

image batches of 30

patients out of 5065

images from 1320 cases

n Department of

Dermatology, Severance

Hospital in Seoul, Korea

(OOD)

1) c

2) e

Binary: malignant/

benign, multiclass

(32)

1) Significant superiority of

the attending clinicians

2) Binary: on par

performance

Multiclass: significant

superiority of the CNN

Metadata (additional information for readers beyond image input, e.g. age, gender, localisation of the suspicious lesion).

y, yes.

n, no.

c, clinical setting.

e, experimental setting.

CNN, convolutional neural network.

OOD, out of distribution.
a For multiclass classification, 39721 images from 10315 cases of 32 disorders remained, after excluding cases belonging to too small and untrained classes.
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authors were the first to provide a clinical image reader

study in a clinical setting by incorporating 65 attending

clinicians that recorded their diagnoses during thorough

examinations in clinical practice. The CNN was signifi-

cantly outperformed by the attending participants

regarding the binary (62.7% vs. 70.2% sensitivity and

90.0% vs. 95.6% specificity, p < 0.0001) and the multi-

class classification task (42.6% vs. 65.4% accuracy).
However, when conducting the reader study with 44

board-certified dermatologists that reviewed multiple

images of the affected lesions in an experimental setting,

the CNN achieved comparable results for the binary

discrimination of images (66.9% vs. 65.8% sensitivity

and 87.4% vs. 85.7% specificity) and significantly supe-

rior accuracy for the multiclass classification into 32 skin

disorders (49.5% vs. 37.7%).

3.3. Automated skin cancer classification of

histopathological WSI

WSI scanners have enabled the efficient digitisation of
H&E-stained tissue sections, thereby setting the

cornerstone for the development of AI-based digital skin

cancer biomarkers for histopathology (e.g. Refs.

[10,11]). Besides the proposed clinical and dermoscopic

studies, two comparative approaches using histopatho-

logical WSIs met the inclusion criteria of this systematic

review (see Table 3) [31,32]. Supplementary Table 6

summarises the training and testing procedures of both
approaches.

Hekler et al. [31] were the first to compare the per-

formance of a CNN developed for the classification of

cropped image sections of WSIs with the results ob-

tained by 11 pathologists. The CNN significantly out-

performed the participants in terms of mean sensitivity,

specificity and accuracy (76.0%, 60.0% and 68.0% vs.

51.8%, 66.5% and 59.2%, p Z 0.016).
Brinker et al. [32] compared the ability of a CNN

ensemble to differentiate MM from benign melanocytic

nevi with that of 18 international expert pathologists

using the entire WSIs instead of cropped image sec-

tions. Even when the tumour region was not annotated

before training, the CNN ensemble achieved compa-

rable results with that of the participants in terms of

mean sensitivity, specificity and accuracy (88.0%, 88.0%
and 88.0% vs. 88.9%, 91.8% and 90.3%).
4. Discussion

4.1. Principal findings

All 19 included reader studies demonstrated an at least

equivalent classification performance of CNNs and cli-

nicians. This was true not only for binary classification

tasks but also for multiclass classification tasks, which
reflect better the clinical relevant differential diagnosis.

The included studies covered three main image types

(dermoscopic, clinical and histopathological WSIs).

Because the study designs were very heterogeneous and

a direct comparison among them was mostly not

possible, our discussion is mainly focused on their po-

tential clinical relevance.

4.1.1. Test set characteristics

While a large proportion of clinical reader studies based

their comparison on OOD test sets [27e30] (see Table

2), the vast majority of dermoscopic and histopatho-

logical approaches (8 out of 13, see Tables 1 and 3)
grounded their reader study on holdout images exclu-

sively. While this may partially be due to the limited

amount of publicly available data sets for histopatho-

logical WSIs, there are already several public dermo-

scopic data sets available. This makes the omission of

external testing for dermoscopic studies questionable.

The authors of a large international challenge which

included many AI models competing against hundreds
of clinicians [22] showed that the difference between

human experts and the top three challenge algorithms

was significantly lower for test images that came from a

different source than the training images. This highlights

that generalisability to OOD data is not guaranteed. To

provide comparisons that account for the variance be-

tween image records from different sources, as in clinical

reality, reader studies that allow classifiers to be evalu-
ated on OOD images (e.g. from external clinics) should

be considered the gold standard for future research

[33,34].

To achieve more general statements about the per-

formance of automated skin cancer classification in

comparison with clinicians, it is important to use test

data that are as representative of the world population

as possible and at least include the relevant skin diseases
that are commonly encountered in clinical practice.

Navarrete-Dechent et al. [33], for example, showed that

the sensitivity of a skin cancer algorithm was consider-

ably lower when applied to a different patient popula-

tion, thus limiting its generalisability. However, few

studies have explicitly expanded their test data with skin

lesions from different ethnicities to ensure diversity of

skin types [7,22]. Regarding the 6 clinical reader studies,
3 of these studies recruited images from an Asian

skinetype population exclusively. On the other hand,

the images of the ISIC database (used as a test set for 6

out of 11 dermoscopic reader studies) mainly encom-

passed light-skinned skin lesions from patients in

Europe, Australia and the United States, whereas Asian

and dark-skinned populations were underrepresented.

Yu et al. [19], Haenssle et al. [24] and Tschandl et al. [7]
proved the potential of CNN-based classification for

special anatomic sites such as the face and scalp [24] or
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acral MM on the hands and feet [19], as well as rare

subtypes such as amelanotic MM [7]. However, other

special anatomic sites (e.g. genital area), rare subtypes

(e.g. mucosal or desmoplastic MM) and the simulta-

neous incorporation of all relevant factors for a repre-

sentative test set composition (i.e. diversity of skin types,

skin diseases and anatomical sites) remain poorly

investigated.
4.1.2. Test setting

One possible limitation of almost all proposed publica-

tions (18 out of 19, see Tables 1e3) is the experimental

test setting of the conducted reader studies. The

decision-making basis of 14 of the 19 (see Tables 1e3)

included reader studies was limited to a single image of

the suspicious skin lesion. Haenssle et al. [4,18,24]

showed that dermatologists performed somewhat better,

when provided with additional close-up images and
patient information such as age, sex or lesion location.

The authors highlighted the value of clinical data in

addition to visual data. Clinicians assess patients with

all their lesions, aiming to identify the ‘ugly duckling’

throughout physical examination. Even tele-

dermatologists are trained to leverage information

from multiple sources. The CNNs considered in this

systematic review, however, have been trained to assign
a label for images only, disregarding the clinical context.

Therefore, comparative studies that are solely based on

single images fall short of the clinical routine. Interest-

ingly enough, in these [4,18,24] and other [7,29] studies

in which multiple images were provided to human ex-

perts, the participants only attained at most equivalent

results in comparison with CNN-based classification.

Nevertheless, to enable a fair comparison, future reader
studies should not only provide clinicians but also pro-

vide CNNs with additional close-up images and patient

information (e.g. Refs. [35,36]).

One reason why participants with additional patient

information did not outperform CNNs might be that

the setting was still artificial. In most of the analysed

studies (18 out of 19, see Tables 1e3), including those

with additional clinical or image data, the recording of
the participants’ diagnoses took place through web-

based rating applications or online questionnaires,

thereby substantially differing from the decision-making

process occurring in daily clinical practice. Only one

study had its participants record their diagnosis during

clinical examination of the patient [29]. Under these

conditions, the CNN was significantly outperformed by

the participating dermatologists, regardless of the clas-
sification task. This finding highlights that no conclu-

sions about the added value of automated MM

detection should be drawn solely based on experimental

comparisons.
4.1.3. Representativeness of the included clinicians

A considerable number of publications already included

clinicians with different levels of experience, ranging

from dermatology trainees to board-certified dermatol-

ogists. However, from a statistical point of view, the

number of incorporated clinicians from certain sub-

groups (e.g. level of experience) did not reach the

necessary threshold of n Z 30 to get reasonable mean
averages (in accordance with the central limit theorem),

hence raising concerns about adequate statistical repre-

sentativeness. Moreover, only few studies included der-

matologists in private practices (e.g. Refs. [16,23,30]).

Given that dermatologists in private practices carry out

skin cancer screenings for most of the population, we

believe that they were not represented adequately in the

assessed studies of this systematic review. Comparative
studies with a larger number and variance of human

experts would help in making the results more repre-

sentative of the actual physician population that is

encountered in clinical practice.

4.2. Limitations and outlook

This systematic review is limited to approaches that

considered direct comparison between CNN-based skin

cancer classification and clinicians. However, AI-based
systems are susceptible to the influence of confounding

factors (e.g. skin markings, skin hairs) [37,38] and small

changes in image input (e.g. scaling or rotation) [39],

therefore requiring a ‘plausibility check’ by human ex-

perts to avoid false diagnoses. Thus, one of the main

practical uses of AI with dermoscopic, clinical and his-

topathological WSIs may be the use as an assistance

system, calling for a complementary instead of a
comparative perspective (e.g. Refs. [40,41]).

We explicitly addressed studies that had a diagnostic

classification task as their main objective. This is, how-

ever, only one of many aspects that are important for

improved personalised patient care. To further enhance

precision medicine and therapy selection in addition to

mere cancer identification using AI-based assistance

systems, we should not only consider studies comparing
computer-aided diagnosis but also expand on studies

focussing on prognostic end-points such as therapy

response or long-term survival (e.g. Refs. [14,15]) to

leverage the full potential of novel DBs.

Finally, because positive studies outlining statistically

significant results are more likely to be published than

negative studies that did not reject the null hypotheses,

we cannot exclude the risk of publication bias.

5. Conclusions

All 19 included reader studiesdregardless of the classi-

fication task and the type of input datadshowed
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superior or at least equivalent performance of CNN-

based classifiers in comparison with clinicians. This in-

dicates the potential of CNN-based approaches to

evolve into novel DBs. However, almost all studies were

conducted in an experimental setting based exclusively

on single images of the suspicious lesions. To increase

clinical relevance of the results, future comparison

studies should be conducted under less artificial condi-
tions, with use of external OOD test sets reflecting the

full range of ethnicities and melanoma subtypes occur-

ring in clinical practice. Furthermore, there is a need for

truly prospective studies comparing the clinicians’ di-

agnoses after real-life face-to-face patient examinations

with the results of AI-based classification models.

Ideally, such studies would also measure the impact of

the CNN classifications on the final management de-
cisions of clinicians.
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