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Protein-protein interactions (PPIs) mediate a large number of important regulatory
pathways. Their modulation represents an important strategy for discovering novel
therapeutic agents. However, the features of PPI binding surfaces make the use of
structure-based drug discovery methods very challenging. Among the diverse
approaches used in the literature to tackle the problem, linear peptides have
demonstrated to be a suitable methodology to discover PPI disruptors. Unfortunately,
the poor pharmacokinetic properties of linear peptides prevent their direct use as drugs.
However, they can be used as models to design enzyme resistant analogs including, cyclic
peptides, peptide surrogates or peptidomimetics. Small molecules have a narrower set of
targets they can bind to, but the screening technology based on virtual docking is robust
and well tested, adding to the computational tools used to disrupt PPI. We review
computational approaches used to understand and modulate PPI and highlight
applications in a few case studies involved in physiological processes such as cell
growth, apoptosis and intercellular communication.
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INTRODUCTION

Most proteins mediate complicatedmetabolic and signaling pathways through interaction with other
proteins, either in the form of dimers or as components of larger complexes (Hunter, 2000; Stelzl
et al., 2005). Some of these interactions are transient, while others are more permanent. It is estimated
that there are approximately 650,000 types of specific protein-protein interactions (PPI) in a human
cell (Stumpf et al., 2008) and as much as 40% of these are mediated by short peptide linear binding
motifs (London et al., 2013). Actually, protein domains involved in PPIs often bind multiple peptides
that share linear motifs—common sequence patterns—like for example, the canonical SH3 domain-
binding PxxP motif (Mayer, 2001). These motifs are often embedded within locally unstructured
protein regions but can also bind their partners as short, isolated peptides acting as PPIs inhibitors.

Mapping PPIs is key to understand a wide range of physiological processes such as cell growth,
apoptosis and intercellular communication. In turn, anomalies in protein interaction networks
including the concentration of a specific protein in the cell are associated with diseases such as cancer,
infectious diseases, and neurodegenerative diseases (Gonzalez and Kann, 2012). Accordingly, a
detailed understanding of the human interactome--the complex network of PPIs—(Luck et al., 2020)
offers novel opportunities for therapeutical intervention (Milroy et al., 2014).

Edited by:
Laura Belvisi,

University of Milan, Italy

Reviewed by:
Sebastian Kmiecik,

University of Warsaw, Poland
Helen Mott,

University of Cambridge,
United Kingdom

*Correspondence:
Juan J. Perez

juan.jesus.perez@upc.edu

Specialty section:
This article was submitted to

Molecular Recognition,
a section of the journal

Frontiers in Molecular Biosciences

Received: 17 March 2021
Accepted: 05 May 2021
Published: 20 May 2021

Citation:
Perez JJ, Perez RA and Perez A (2021)
Computational Modeling as a Tool to
Investigate PPI: From Drug Design to

Tissue Engineering.
Front. Mol. Biosci. 8:681617.

doi: 10.3389/fmolb.2021.681617

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6816171

REVIEW
published: 20 May 2021

doi: 10.3389/fmolb.2021.681617

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.681617&domain=pdf&date_stamp=2021-05-20
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681617/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681617/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.681617/full
http://creativecommons.org/licenses/by/4.0/
mailto:juan.jesus.perez@upc.edu
https://doi.org/10.3389/fmolb.2021.681617
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.681617


Designing different kinds of PPIs modulators, including
inhibitors that arrest signaling by disrupting a specific PPI or
enhancers that restore signaling through facilitation of a specific
PPI is now a major goal in controlling cell processes and
pathways. In addition, allosteric binders can provide a
different type of PPI modulation, acting through the selective
perturbation of a protein interaction with specific partners and
modulating a signaling pathway accordingly (Cesa et al., 2015).
Indeed, this procedure opens the possibility of designing two
different disruptors acting on the same target that produce
different cellular responses due to the way they alter local PPI
networks. Conceptually, designing PPI disruptors is simpler than
designing enhancers, since the latter require finding a short linker
that brings the two proteins in close contact to each other,
whereas the former require finding molecules that bind to any
site of any of the two proteins to prevent their association.

Designing modulators of PPIs is challenging compared to ligands
targeting enzymes or GPCRs, due to the specific features of protein-
protein interfaces including a large and flat interfacial area
(∼1500–3000 Å2), lacking in grooves or binding pockets (Wells
and McClendon, 2007). Moreover, the PPI binding free energy is
characterized by a large buried hydrophobic surface area, suggesting a
large entropic contribution—although electrostatic complementarity
of interacting protein surfaces is also important in PPIs. Consequently,
the binding free energy is not correlated to the PPI surface area buried.
For example, the complex of the tumor suppressor p53 protein to its
negative regulator MDM2 described below is an example of a small
contact surface area and high affinity (Borcherds et al., 2014), while the
complex of the Bcl2-associated athanogene (Bag) and an eukaryotic
chaperone 70-kDa heat shock protein (Hsp70) exhibits a high surface
area, but a small binding free energy (Sondermann et al., 2001).
Interestingly, PPI surfaces exhibit a reduced number of key
contributors or “hot spots” to the binding free energy (<2 kcal/
mol) that are usually found at the center of the interface.
Tryptophan, arginine and tyrosine are the most frequent residues
identified as “hot spots”, whereas other residues such as valine, lysine
or serine rarely participate (Hu et al., 2000). The occurrence of key
residues in PPIs was demonstrated for the first time in the seminal
study of the complex of the human growth hormone (hGH) and the
extracellular domain of its receptor (gGHbd) (Clackson and Wells,
1995). In order to understand the contribution of each residue to the
PPI, the authors produced all the possible gGHbd mutants generated
by substitution of each individual residue involved in the PPI surface
area by alanine. The process permitted to show that 8 out of 31 side
chains involved in the PPI surface area contributed about 85% to the
binding free energy of the complex. Alanine scanning technique is
currently carried out in vivo using phage display technology in a
combinatorial fashion (Morrison andWeiss, 2001) and computational
strategies to perform alanine scanning have also been developed
(Kortemme et al., 2004).

Diverse kinds of molecules from small molecules to antibodies
have been used in the past as PPI disruptors (Gordo and Giralt,
2009). Among them, peptides have emerged as privileged
molecules (Nevola and Giralt, 2015; Bruzzoni-Giovanelli et al.,
2018). Analysis of protein complexes show that a large number of
structures involve short linear peptide binding motifs and a
globular protein domain. Interestingly, these peptide segments

are responsible for most of the binding free energy (Petsalaki and
Russell, 2008). Peptides are flexible and can adapt themselves to
large surfaces, can be easily optimized and are safe and well
tolerated. However, peptides exhibit limitations as drugs
including the means of administration, poor pharmacokinetic
profile and bioavailability. Despite their drawbacks to be used as
drugs, peptides can be modified to produce peptidomimetics and
peptide surrogates including cyclic peptides with an improved
ADME profile. Peptidomimetics refers to small molecules that
mimic key stereochemical features of the bioactive conformation
of a target peptide (Perez et al., 2002; Akram et al., 2014; Perez,
2018; Santini and Zacharias, 2020; Tomasella et al., 2021).
Designing peptidomimetics requires knowledge of key residues
involved in peptide-protein interactions and structural features of
the bioactive conformation. When the 3D structure of the
complex is available, the process is simpler, however most of
the times the bioactive conformation needs to be assessed using a
combination of biophysical and computational methods together
with the synthesis and biological evaluation of the molecules
designed. In this case the roadmap normally followed for
designing peptidomimetics is shown in Figure 1.

Below we describe the use of computational methods in
conjunction of other biophysical and medicinal chemistry
techniques to help to understand the features of peptide
ligands, necessary to design PPI disruptors peptidomimetics
and peptide surrogates and describe a few examples in drug
discovery and tissue engineering.

STRUCTURAL FEATURES OF
PROTEIN-PEPTIDE INTERACTIONS

The increased awareness on the role of peptide epitopes for
mediating PPI has evidenced the need for a deeper structural
understanding. Complexes are underrepresented in the PDB with
respect to their biological prevalence, and experimental
techniques often require expensive approaches (e.g., isotope
labeling in NMR) to characterize peptide-protein interactions.
Computational tools are a promising approach to bridge the gap.
The goal of computational methods is to predict where and how a
peptide would bind a protein receptor, distinguish which peptide
sequences might be better binders, and help in the design process.
Improvements in computational tools continue to push our
ability to gain structural insights applicable to design principles.

Curated peptide-protein databases such as pepBDB (Wen et al.,
2019), peptiDB (London et al., 2010) or pepBind (Das et al., 2013)
compile a list of known protein-peptide systems found in the Protein
Data Bank (PDB) (Berman et al., 2000). These curated databases are
useful for the training, classification and understanding of peptide-
protein interactions. Analyzing these databases helps to classify the
types of interaction according to peptide structure, binding interface or
degree of challenge for computational methods amongst other
metrics. For example, Arkin and co-workers classified three types
of peptide-protein binding (Arkin et al., 2014) according to the
primary, secondary or tertiary structure they adopt. The primary
structure binding motif is represented by short linear peptides such as
those present in interactions between the extracellular matrix and
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membrane bound integrins (Ruoslahti, 1996). Secondary structure
motifs involve the peptide adopting a determined secondary structure
(e.g., alpha helix or beta strand) such as in the p53-MDM2 interaction
(Kussie et al., 1996) or the BH3-Bcl-2 interaction (Adams and Cory,
1998), whereas tertiary structure represents discontinuous binding
sites such as the XIAP-Smac interaction (Wu et al., 2000). A different
classification for peptide-protein interactions is by looking at the
protein-protein interface they are posed to inhibit (Yan et al., 2008).
Peptides binding deep cavities are typically easier to model than those
that interact with extended flat surfaces. Finally, one of the more
challenging aspects is the degree of plasticity in the bindingmode. This
includes the conformational changes of the protein receptor as well as
the ability to accommodate multiple binding conformations. This is
especially characteristic of protein interaction hubs such as those
involved in gene regulation (Aiyer et al., 2021). Many peptides are
intrinsically disordered and fold upon binding, hence optimization of
peptide design will often try to maximize interactions in the complex
as well as the propensity of the peptide to adopt bound structures (e.g.
through chemical staples or cyclization). Peptidomimetics are often a
solution inwhich the peptide interactions are closelymaintainedwhile
designing a molecule with a lower number of degrees of
conformational freedom.

COMPUTATIONAL METHODS USED TO
STUDY PROTEIN-PEPTIDE INTERACTIONS

Approaches such as docking and free energy perturbation are
now routinely used in the drug discovery process for small

molecules. Docking methodologies explore libraries of millions
of virtual compounds in search for small molecule scaffolds or for
drug repurposing efforts (Kitchen et al., 2004). Meanwhile, free
energy perturbation methods are now able to calculate relative
(and absolute) binding free energies with errors comparable to
experiments (Wang et al., 2015). Despite the successes, they have
well known limitations regarding the nature of the ligands (e.g.,
flexibility or charge) as well as the structural rearrangements
needed in the protein receptor, which become important for
peptide-protein systems.

Since 2001, the CAPRI (Critical Assessment of Predicted
Interactions) (Janin et al., 2003) has been instrumental in
assessing the developments in methods that predict
macromolecular assemblies as well as scoring functions that can
identify the best predictions. The focus has been in interactions
between a protein and other proteins, nucleic acids and
peptides–with an emphasis on protein-protein interactions.
CAPRI is a blind prediction effort in the spirit of CASP (Critical
Assessment of Structure Prediction) (Moult et al., 1995): research
groups from around the world use their methods to predict atomic
resolution 3D structures for targets provided by CAPRI, and to
predict the ranking of models based on scoring functions. The event
operates with strict time deadlines for each target. At the end of the
event, assessors rank the predictions comparing them to the
experimental structure (which is unknown to the community at
the time of the predictions). Assessors are also blind to which group
performed each prediction (double-blind experiment). These
methods perform well for easy targets in which there are small
changes in the proteins between their free and bound form.

FIGURE 1 | Roadmap for peptidomimetics design. Starting from the native peptide (1), first step regards establishing the shortest peptide fragment with activity, as
well as identification of key residues involved in recognition (in red) (2). Next, using information about the secondary structure of the peptide in its bound conformation,
proceed to design conformationally constrained analogs mimicking the bioactive conformation (3). These analogs represent the first generation peptidomimetics. Finally,
identification of small molecule scaffolds that permit a correct spatial arrangement of relevant chemical groups (identified in step 2) to yield second generation
peptidomimetics (4).
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Performance decreases for both scoring and prediction methods for
the “hard” targets in which binding requires conformational changes
in the proteins with respect to their free form (Lensink et al., 2019).

The above limitations become relevant for the study of peptide-
protein systems. Many peptides are intrinsically disordered in their
free form, becoming structured during the binding process.
Predicting bound conformations requires tackling this
conformational flexibility and estimating the entropic
contribution of adopting bound conformations to the free energy.
Knowing the bound conformation of a protein-peptide system does
not imply that other peptide sequences can adopt the same bound
conformation. This binding plasticity is best exemplified by: 1)
receptors that bind different peptide sequences in different
conformations (Aiyer et al., 2021) and 2) peptide sequences that
can adopt different structures when binding different receptors
(Huart and Hupp, 2013). This amount of binding plasticity is a
challenge for predicting peptide-protein interactions and for
computing binding affinities.

Amongst the difficulties in predicting bound conformations
for protein-ligand interactions is the mechanisms by which
binding takes places. It is now widely accepted that binding
happens through a combination of two main binding
mechanisms, traditionally described as induced fit and
conformational selection. The mechanism behind induced fit is
that a ligand will bind in the active site and the protein/ligand
system will undergo a conformational transition toward the
bound conformation. In the conformational selection
mechanism, the protein and ligand each have an ensemble of
possible conformations available to them—and binding occurs
through a specific conformation. Each particular system under
study will have a different contribution from each mechanism.
Thus, how much a system changes from the unbound/bound
conformation is often used as a measure of the difficulty in
predicting binding. The fly casting mechanism (Shoemaker et al.,
2000; Sugase et al., 2007) has been coined to understand how
intrinsically disordered domains can accelerate molecular
recognition. This binding mechanism is often exhibited in
peptide epitopes involved in PPIs. The resulting peptides are
often intrinsically disordered as described in the above paragraph,
resulting in a more challenging scenario than in small molecules,
where now both the protein and peptide molecules can change
conformations significantly from their free form.

Docking-Based Approaches
An array of docking methodologies have emerged in the last few
years, in response to a growing pharmacological interest for
peptide-based drugs. Excellent reviews on such methods have
been published (Ciemny et al., 2016; Porter et al., 2019;
Aderinwale et al., 2020), along with studies providing
benchmark sets for assessing current and future methods.
Here we provide an overview of the general principles behind
these approaches as well as efforts from the simulation
community in predicting protein-peptide interactions.

Docking methods operate in different search modes
depending on the known information about the system of
interest. The ultimate goal is to recover the binding site and
binding mode for the protein-peptide conformation. This

problem can be broadly divided in two parts: the search
problem and the scoring problem. The search problem is
related to exploring the relative peptide-protein relative
position and orientation, as well as the internal conformation
of the protein and peptide. The scoring stage aims to identify the
correctly bound structures amongst all predictions based on a
function that relates docking structures to a score. Assessment of
success is done on the top scoring poses.

For computational efficiency, docking methods reduce the
search space in several ways, depending on the known
information about the system. In a global search strategy, the
peptide explores binding at all possible sites along the protein-
receptor surface (Pierce et al., 2011; Kurcinski et al., 2015; Alam
et al., 2017; de Vries et al., 2017; Porter et al., 2017; Xu et al., 2018;
Zhou et al., 2018). Whereas in a local search approach, the
binding region is limited based on prior knowledge, resulting
in a more directed search (Jain, 2007; Antes 2010; Donsky and
Wolfson, 2011; London et al., 2011; Trellet et al., 2013; Rentzsch
and Renard, 2015; Lamiable et al., 2016; Antunes et al., 2017;
Zhang and Sanner, 2019). Finally, template-based approaches
forego this search by building flexibility on top of models
extracted from structural databases based on protein and
peptide alignments (Lee et al., 2015; Obarska-Kosinska et al.,
2016).

The methods can be further divided based on how much
conformational freedom is allowed for the protein receptor and
the peptide. The protein receptor flexibility is a common problem
to protein-protein and protein-small molecule docking
(Andrusier et al., 2008; B-Rao et al., 2009). Approaches to
model protein flexibility include the use of soft potentials
(Fernández et al., 2002; Ferrari et al., 2004), explore rotameric
states (Leach, 1994), using different protein receptor structures
(Amaro et al., 2018; Falcon et al., 2019) or refining with molecular
dynamics (Alonso et al., 2006). The challenges in modeling
peptides arises from: 1) peptides can have different
conformations in their free/bound states; 2) the same peptide
sequence might bind different proteins in different
conformations (Huart and Hupp, 2013), and 3) different
peptide sequences can bind the same receptor in different
conformations (Aiyer et al., 2021). Most docking methods use
a flexible strategy for the peptide conformation. Rather than
exhaustively sampling all possible conformations two approaches
are typically taken: 1) based on sequence, and 2) based on
representative peptide conformations. In the first approach the
peptide sequence is used to either query the pdb for possible
conformations of the peptide fragment (e.g., in proteins that
contain that sequence) or predict secondary structure (Yan et al.,
2016). The second approach uses several initial conformations
generally adopted by peptides during binding (e.g., helix or
extended) (see Weng et al., 2020).

Scoring functions have the task of identifying which poses are
likely to be biologically relevant. Ideally these functions should
reflect the underscoring binding affinities of different poses and
compounds (Li et al., 2021). Their use dates back to the early days
of docking methods to understand protein complexes (Kuntz
et al., 1982). Scoring functions are typically divided in four types:
1) empirical fits, 2) knowledge based, 3) machine learning, and 4)
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first principles (Li et al., 2019; Li et al., 2021). One of the challenges
in the adequate development of scoring functions is the ability to
generate poses that include both good binders and bad binders.
These has led to the development of decoy sets (Graves et al., 2005;
Stein et al., 2021), often used as training sets for new functions.
How these decoy sets are generated influences the corresponding
scoring functions, often resulting in biases. Recent efforts aim at
detecting and overcoming such biases (Morrone et al., 2020).
Scoring functions that work for protein-protein or protein-small
molecule systems are not always transferable to protein-peptide
systems, resulting in the development of several specific peptide-
protein scoring functions (Raveh et al., 2011; Kurcinski et al., 2015;
Spiliotopoulos et al., 2016; Tao et al., 2020).

Despite the importance of blind studies (Lensink et al., 2007),
there have been few protein-peptide targets in CAPRI in recent
years (Weng et al., 2020). Benchmarking studies (Agrawal et al.,
2019; Santos et al., 2020; Weng et al., 2020) and peptide protein
datasets (London et al., 2010; Hauser and Windshügel, 2016)
provide the community with the tools needed to improve docking
and scoring methodologies. These benchmarks are typically
divided into easy/medium/hard categories according to the
conformational changes that the peptide has to undergo to
bind (Trellet et al., 2013; Weng et al., 2020). A recent
benchmark study using 14 different docking programs (Weng
et al., 2020) shows that despite improvements in peptide-protein
docking, predicting binding modes when large conformational
changes are involved remains challenging.

Free Energy-Based Approaches
We refer in this category to methods that produce ensembles
obeying detailed balance, and using statistical mechanics to infer
representative structures and free energies. Sampling is generally
achieved through Monte Carlo (Metropolis et al., 1953;
Hansmann and Okamoto, 1999) or Molecular Dynamics (MD)
(McCammon et al., 1977) approaches using a force field to
represent atomic interactions and capture the entropic
contribution in the ensembles. In these approaches, a single
point structure evaluation of the potential (given a force field)
is not relevant to identify low free energy states—whereas scoring
functions in docking or knowledge-based potentials are intended
to evaluate single structures. Through the sampling of the free
energy landscape these methods capture kinetics, mechanisms of
action and binding affinities. The challenge in these
methodologies is to sample timescales relevant to binding
events. Simulations now routinely sample the microsecond
timescale, but binding events typically require reaching the
millisecond timescale. Despite improvements using specialized
hardware (Pan et al., 2017), using brute force MD for binding
remains computationally unfeasible. A common strategy is to use
MD based approaches as the last stage of docking pipelines,
leading to refined models. Recently, improvements in advanced
sampling techniques and computer efficiency are opening new
opportunities to study peptide-protein binding.

Free energy perturbation (FEP) methods are the golden
standard for characterizing binding free energies of small
molecules (relative or absolute) (Wang et al., 2015). FEP
requires knowledge of the bound state and uses a path

independent approach, generally combining alchemical
transformations and restraints to evaluate the binding free
energy change. These methods suffer when there are large
changes in the scaffold of the molecule, the overall charge or
when multiple binding modes have to be included (Gill et al.,
2018; Ruiter and Oostenbrink, 2020; Wallraven et al., 2020).
Thus, the successes of FEP for small molecules are not yet
generally transferable to protein-protein or protein-peptide
systems. Advanced sampling strategies are opening possibilities
to study the peptide binding process and extract binding
affinities, albeit at a greater computational expense.

Although there are many advanced sampling techniques, for
the purpose of peptide binding we distinguish between those that
capture kinetics and mechanisms of action and those that identify
states and binding free energies. Advances in frameworks that
combinemultiple unbiasedMD trajectories to recover kinetic and
mechanistic properties such as Markov State Models (Noé et al.,
2009; Bowman et al., 2010), weighted ensemble methods (Huber
and Kim, 1996; Zhang et al., 2010) and milestoning (Faradjian
and Elber, 2004; Votapka and Amaro, 2015) have been used to
study several peptide-protein systems (Giorgino et al., 2012;
Zwier et al., 2016; Paul et al., 2017; Zhou et al., 2017). These
methods can be used to estimate on and off-rates, with off-rates
being significantly harder to obtain due to the long timescales
needed to observe unbinding events.

A second class of advanced sampling strategies combines
known information (e.g., from experiments) and generalized
ensemble methodologies (Sugita and Okamoto, 1999;
Fukunishi et al., 2002) to identify bound conformations
(Morrone et al., 2017a; Morrone et al., 2017b; Lang and Perez,
2021). These approaches are also used to obtain qualitative
relative binding affinities from competitive binding simulations
(Morrone et al., 2017a; Morrone et al., 2017b).

There are yet few instances of using these methodologies as
well as progress towards more quantitative methodologies. For
example, in frameworks that use multiple unbiased trajectories
questions like howmany simulations to start from each state, how
to reweight them or how to visualize them in a space that allows
interpretation of the ensembles is an area of active development.

From Bound Conformations to Sequence
Design
A final strategy used by the community is to identify mutations to
a peptide sequence that will favor interaction with the protein
through the use of fast approaches that rely on statistical or
empirical potentials (Takano et al., 1999; Guerois et al., 2002)
described in the docking section. Here, we typically have
knowledge of a protein-protein interaction and the related
structure, and use the binding epitope as a structural template.
These methods are then used to mutate each residue in the
peptide into different amino acids, using a fast scoring function to
predict those mutations that lead to greater affinity (Delgado
et al., 2019; Torres et al., 2019).

In what follows, we describe three specific examples of PPIs
involved in diverse physiological process including cell growth,
apoptosis or intercellular communication, together with a
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summarized description of the advances carried out for the
development of peptide analogs, surrogates or peptidomimetics.

THE p53-MDM2/X INTERACTION

P53 has been named the “guardian of the genome” for its tumor-
suppressor activity. It is a protein interaction hub, predicted to be
involved in over a thousand PPIs (Tan et al., 2019) through its
different functional domains (May and May, 1999). In this
section we will focus on the interaction between the p53
transactivation domain and the MDM2 protein (or its
homologous MDMX) which marks p53 for degradation.
Inhibition of the p53-MDM2/X interaction has been an
important cancer target, since it liberates p53 to carry its
tumor-suppressor activity. Despite the homology between
MDM2 and MDMX, developing dual inhibitor drugs remains
an active field of research, with several candidates in clinical trials.

The p53-MDM2 interaction involves a short intrinsically
disordered epitope from the terminal transactivation domain of
p53 binding as a helix to the N-terminal domain of MDM2 (Kussie
et al., 1996). MDM2 has a deep hydrophobic cavity which anchors
three residues from p53 (Phe19, Trp23 and Leu26; see PDB id 1YCR,
see Figure 2), (Kussie et al., 1996). MDMX shares an 80% homology
in the binding site with MDM2, resulting in p53 binding along the
same bindingmode (PDB id 3DAB) (Hu et al., 2006; Popowicz et al.,
2008). Despite their similarity, MDMX presents a shallower binding
site, which poses difficulties for developing binding inhibitors.
Computational approaches have played a role in both the
rational design of small molecules (Bowman et al., 2007) and
peptides as potential drugs (Tan et al., 2016).

Studies based on MD and docking have tried to characterize
the details of the p53-MDM2 interaction. Studies using MSM
approaches are now yielding on-rates for p53-MDM2 close to
experiment, while the off-rates remain challenging to estimate
directly (Zwier et al., 2016; Zhou et al., 2017). These studies are
also providing information about the binding mechanisms,
predicting the helicity needed for a peptide to switch from an
induced fit binding paradigm to one in which conformational

selection dominates (Zhou et al., 2017). Some studies are also
using the longer MDM2 construct, which includes a “lid” region
that effectively reduces the amount of time the binding site is
accessible for p53 binding. Molecular dynamics approaches yield
detailed information on the effect of the lid disordered region on
the binding energy surface of MDM2 and compares it to the case
of p53 and several other small molecule drugs (Bueren-Calabuig
and Michael, 2015). Recent flexible docking simulations of the
p53 peptide starting from unbound conformations and including
the disordered tails in MDM2 reported the best scoring structure
to be 3.74 Å from the experimentally bound structure (Ciemny
et al., 2018).

The small molecule drug Nutlin-3a (1 in Figure 3) and its
derivative, idasanutlin (2 in Figure 3) now in pPhase III trial for
relapsed/refractory acute myeloid leukemia were developed for its
ability to bind an inhibit MDM2 (Vassilev et al., 2004; Vassilev,
2005; Ding et al., 2013). However, this family of compounds are not
efficient against MDMX (Hu et al., 2006; Joseph et al., 2010)—
similar trends have been observed in other compounds like AMG-
232 (3 in Figure 3), where binding to MDMX has significantly
lower affinity than for MDM2. Furthermore, small molecules
inhibitors of MDMX have not been successful in culture cells
(Reed et al., 2010). Small molecule designs have tried to mimic the
three hydrophobic residues found in the p53 binding epitope as a
template for efficient inhibitor design (Gonzalez-Lopez de Turiso
et al., 2013; Furet et al., 2016; Burgess et al., 2016) while reducing
their toxicity. Several such designs are currently undergoing clinical
trials (Burgess et al., 2016).

A different strategy for dual inhibition identifies peptide
sequences based on the known binding motif. As a result,
several linear peptides designs (Pazgier et al., 2009; Phan et al.,
2010) with greater affinity than the original p53 peptide have been
found. Peptide designs conserve the three hydrophobic residues
that anchor in MDM2/X and make longer helices. Brownian
Dynamics was used to investigate differences in binding kinetics
for several peptide sequences (ElSawy et al., 2016). Despite the
greater binding affinity to MDM2 and MDMX as mentioned
above, linear peptides exhibited a poor ADME profile: they are
easily degraded and hampered to cross barriers, limiting their use

FIGURE 2 | P53 (left, PDB 1ycr) and a stapled peptide (right, MELD prediction) binding MDM2. Three anchoring hydrophobic residues in the peptide as shown as
sticks (orange). The cartoon representation shows the extended helix for the ATSP7041 stapled peptide.
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as drugs. They are however great starting points for
peptidomimetic design. A different strategy uses non-standard
amino acid backbones (Sang et al., 2020) to increase resistance to
degradation while keeping the side-chains that allow strong
interactions with the protein receptors. Several such peptides
have advanced to clinical trials (Carvajal et al., 2018; Jiang and
Zawacka-Pankau, 2020).

Stapled peptides represent an interesting alternative to
overcome some limitations of linear peptides by easily crossing
barriers, being resistant to degradation and adopting stable helical
conformations that favor binding (Bernal et al., 2007; Chang et al.,
2013; Meric-Bernstam et al., 2017), leading to strong inhibitors.
Tan and co-workers introduced the need for rational design to
incorporate chemical staples by maintaining enthalpic interactions
while reducing entropic costs (Tan et al., 2016). Our work on this
field has centered on identifying bound conformations through
integrative modeling approaches based on molecular dynamics
simulations (Morrone et al., 2017a;Morrone et al., 2017b; Lang and
Perez, 2021). We have been able to predict the binding of several
linear and cyclic peptides as well as qualitative relative binding free
energies (Morrone et al., 2017b). We identify different binding
mechanisms for different peptides (Lang and Perez, 2021): p53
which is intrinsically disordered binds in a disordered state and
then folds in the active site, whereas ATSP-7041 (4 in Figure 3) is a
stapled peptide that binds as a helix. In the latter case, an incorrect
orientation of the side chains requires partial unbinding and
rebinding of the stapled inhibitor. Due to long residence times,
even partial unbinding can be a slow step in simulations, leading to
slow convergence. A linear peptide (pdiq) with strong helical
propensities is shown to be able to rearrange its side chains by
partially unfolding in the active site. Thus, pdiq avoids the slow
unbinding step.

THE BH3-BCL-2 INTERACTION

Apoptosis is an evolutionarily conserved, regulated form of cell
death involved in tissue homeostasis, embryonic development

and immunity (Elmore, 2007). Apoptosis dysregulation has a
major impact in disease, since an excessive response can lead to
neurodegeneration or an increased ischemic risk, whereas a
defective response plays a major role in tumor development and
autoimmune diseases (Favaloro et al., 2012). The intrinsic
apoptotic pathway (physiologically dominant and not
mediated by a death receptor) is regulated through a
complicated PPI network involving the B-cell lymphoma-2
(Bcl-2) family of proteins. With some of the members
exhibiting pro-apoptotic activity and others pro-survival
profiles, the apoptotic process is initiated by the interaction
of pro-apoptotic and pro-survival members regulating
mitochondrial outer membrane permeability, a crucial step in
apoptosis (Chipuk et al., 2010; Czabotar et al., 2014). The
interplay of the members of this family of proteins represents
a good example illustrating how a short linear peptide motif is
key to regulate a complex network of PPIs.

More than 20 members of the Bcl-2 protein family have
been characterized so far. Sequence analysis indicates that
they share one or more specific conserved regions known as
Bcl-2 homology (BH) domains that are necessary for function,
since their deletion via molecular cloning affects survival/
apoptosis rates. Pro-survival members such as Bcl-2, Bcl-xL,
Bcl-w, Mcl-1, Bfl1/A1 and Bcl-B are characterized for
exhibiting four homology domains (BH1-BH4) together
with a transmembrane domain. On the other hand, pro-
apoptotic members can be classified into two subgroups:
the multi-BH domain proteins including the pro-apoptotic
effectors Bax and Bak with four BH domains (BH1-BH4)
together to a transmembrane domain and the BH3-only
proteins such as Bim, Bid, Puma, Bad, Bik, Bmf, Hrk and
Noxa that share little sequence homology, apart from the
BH3-domain (Chittenden, 2002). Some of the BH3-only
proteins like Bim, Bid and to a lesser extend Puma are
direct activators of the pro-apoptotic effector proteins,
whereas the rest are sensitizers that indirectly activate Bak
and Bax by binding to pro-survival proteins and liberating
BH3-only activators (Singh et al., 2019) (Figure 4).

FIGURE 3 | Chemical structures of nutlin-3a (1); idasanutlin (2); AMG-232 (3) and ATSP-7041 (4).

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 6816177

Perez et al. Peptide Computational Modeling for PPIs

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Despite the progress made in the last years, the mechanism of
apoptosis regulation by the Bcl-2 family of proteins is not
completely understood (Ichim and Tait, 2016). It is well
established that the relative amounts of pro-apoptotic and
pro-survival proteins in a cell, together with the capability of
these proteins to form heterodimers, determine cell susceptibility
to undergo apoptosis (Oltvai et al., 1993). Moreover, it is well
established that pro-survival proteins inhibit apoptosis by directly
binding to and sequestering their pro-apoptotic counterparts.
This hypothesis was demonstrated when the BH3 domain of pro-
apoptotic proteins showed capability to induce apoptosis in cell-
free systems and HeLa cells (Holinger et al., 1999; Wang et al.,
2000). Thus, under normal conditions in healthy cells, pro-
survival Bcl-2 proteins sequester pro-apoptotic effectors as well
as BH3-only proteins, preventing apoptosis. However, upon
cytotoxic stress, the overwhelming number of BH3-only
proteins produced activate pro-apoptotic effectors either by
direct binding or through the liberation of restrained pro-
apoptotic effectors by binding to pro-survival Bcl-2 proteins.
This process originates the accumulation and activation of pro-
apoptotic effectors with their subsequent oligomerization at the
mitochondrial outer membrane, inducing its permeability
(Chipuk et al., 2010; Singh et al., 2019). Moreover, the variable
affinities exhibited by the diverse members of family for each
other and their modulation when proteins are embedded in a
membrane are also relevant. Consequently, BH3 domain peptide
analogs and surrogates have been long considered appealing
molecules for therapeutical intervention (Goldsmith et al.,
2006), especially in cancer, since downregulation of apoptosis
is considered a key step for the initiation and maintenance of the

disease (Hanahan and Weinberg, 2000; Hanahan and Weinberg,
2011).

Structural studies on diverse members of the Bcl-2 family have
provided a wealth of information, being key to understand the
molecular mechanisms by which the intrinsic apoptosis pathway
is regulated. The 3D structure of the human Bcl-xL in its apo
form, solved by NMR spectroscopy and X-ray crystallography
was the first one available (Muchmore et al., 1996). It consists of
eight alpha helices (α1-α8) that are connected to the BH domains.
Specifically, the BH2 spans along helix α8, the BH3 along helix α2
and the BH4 along helix α1. In contrast, the BH1 spans partially
along helices α4 and α5 together to the loop connecting them
(Figure 5A). In addition, the protein also has a C-terminal
segment that serves as an anchor to the membrane, needed to
be removed to conduct structural studies. A major feature of the
structure is the large hydrophobic groove formed by the BH1-
BH3 domains that corresponds to the interaction site of the BH3
domain of its counterpart family members, as shown in diverse
crystallographic structures. The structures of the rest of the pro-
survival members of the Bcl-2 family in their apo form exhibit the
same topology (Petros et al., 2001; Hinds et al., 2003; Day et al.,
2005; Harvey et al., 2018). Interestingly, the structures of the pro-
apoptotic effectors Bak and Bax also exhibit the same topology,
despite their diametrically opposing functions (Suzuki et al., 2000;
Moldoveanu et al., 2006). In contrast, except for Bid that also
exhibits a similar structure (Chou et al., 1999), most BH3-only
proteins are intrinsically disordered (Hinds et al., 2007).

There are currently no heterodimer structures available
involving Bcl-2 family members. However, several structures
of pro-survival Bcl-2 members bound to BH3, the linear
peptide motif involved in pro-survival-pro-apoptotic PPIs are

FIGURE 4 | Direct and indirect mechanism models for Bax or Bak activation in the intrinsic cell death pathway. In the indirect activation model (left), in the resting
state effectors Bax and Bak are inhibited directly by pro-survival members (1). After an apoptotic stimulus, BH3-only proteins bind to pro-survival proteins releasing pre-
activated Bak and Bax (2) to initiate the apoptosis process (3). In the direct activation model (right), after an apoptotic stimulus BH3-only activators activate Bak/Bax,
whereas BH3-sensitizers inhibit pro-survival Bcl-2 members, initiating the apoptotic process.
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available. The complex Bcl-xL-Bak BH3 domain was the first
three dimensional structure solved of any Bcl-2 protein complex
(Figure 5B) (Sattler et al., 1997). The structure shows the BH3
domain in a helical structure bound to a hydrophobic groove with
four hydrophobic residues projecting their side chains into the
cleft and with the Asp83 residue displaying an electrostatic
interaction with Arg139 in Bcl-xL. Subsequently, several
structures of BH3 domains bound to diverse pro-survival Bcl-
2 members were reported in the literature, all of them exhibiting
the same general features found in the Bcl-xL-Bak BH3 complex
(Petros et al., 2004). Sequence alignment of the diverse BH3
domains shows they display the consensus sequence
V1ΣXXV2XXV3ΣDZV4Γ, where Vn represents a hydrophobic
residue, Σ is a residue with a short side chain, Z an acidic residue,
Γ is a hydrophilic residue and X represents any residue (Chen
et al., 2005; Day et al., 2008; Lomonosova and Chinnadurai,
2008). The V2 residue is a leucine in all pro-apoptotic BH3-only
members whereas Ile, Leu, Val, Met or an aromatic residue are
frequently found for the rest Vn. The pattern Vn display
guarantees their alienation on the same face of a helical
structure. These four residues together with the conserved
aspartic acid are the residues responsible for binding the hot
spots at the hydrophobic binding cleft consisting of four
hydrophobic pockets (P1-P4) together with a conserved
arginine. As mentioned above, the pro-apoptotic BH3 domains
bind the pro-survival proteins with different affinities. Thus, Bim
and Puma have comparable affinity for all pro-survival proteins.
Bad and Bmf preferently bind Bcl-2, Bcl-xL and Bcl-w, whereas
Noxa bind only Mcl-1 and Bfl1/A1 and Bid, Bik and Hrk bind
Bcl-xL, Bcl-1 and Bfl1/A1 (Chen et al., 2005). This differential
profile is due to differences in their sequence, since mutations can
reverse binding preferences (Campbell et al., 2015). Numerous
structural and computational studies have been performed to
understand the nature of the binding preferences between BH3
peptides the diverse members of the Bcl-2 family, providing a
deeper insight into the nature of these interactions key to design

BH3 peptide surrogates and peptidomimetics (Lama and
Sankararamakrishnan, 2011; Ivanov et al., 2016; Zhang et al.,
2018; Vila-Julià et al., 2020). This knowledge is specially relevant
for designing selective BH3 analogs (Denis et al., 2020; Reddy
et al., 2020).

In order to design drugs with BH3 functionality, peptide
analogs and surrogates are expected to be more resistant to
proteolytic enzymes and can also be designed to exhibit higher
populations of the bioactive conformation in solution compared
to the original linear peptides. Diverse strategies have been used
for the discovery of potent peptide surrogates of the BH3 domain
(Orzáez et al., 2009). As a general strategy, increased resistance to
proteolytic enzymes can be carried out by replacing peptide
bonds by isosteres or using a holistic approach, constructing
retro-inverso analogs or peptoids (Perez et al., 2002; Akram et al.,
2014; Perez, 2018). The design of α/β peptide surrogates of BH3
with sequences alternating α and β amino acids have been
successfully designed (Horne et al., 2008). Interestingly, the
α/β alternating pattern can modify the pharmacodynamic
profile of the analogs changing their affinity or moreover, their
selectivity for the different pro-survival proteins (Boersma et al.,
2012).

Experimental studies as well as computational studies reveal
that BH3 peptides do not exhibit a helical structure in solution
(Petros et al., 2000; Perez et al., 2016). In order to avoid negative
configurational entropy effects, the affinity of the analogs can be
increased by designing analogs that enhance the bioactive
conformation population in solution by embedding helix
enhancer residues in the sequence (Delgado-Soler et al., 2013).
An alternative approach focused on constraining the helical
structure of the analogs in solution. Early attempts to stabilize
the Bak BH3 peptide used lactam cross-links side chain-to-side
chain at positions i and i+4 (5 in Figure 6). Unfortunately,
although the peptides exhibit helical structure, none of these
analogs showed any binding to Bcl-2 due to a steric hindrance
with the receptor (Yang et al., 2004). In contrast, the hydrocarbon

FIGURE 5 | (A) 3D structure of Bcl-xL (PDB ID: 1MAZ) with the diverse elements of secondary structure labeled. The BH domains are color-coded: BH1 navy blue;
BH2 cyan; BH3 yellow; BH4 dark green. (B) 3D structure of the complex Bcl-xL/BH3-Bak (in orange) (PDB ID:5FMK).
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stapling approach demonstrated to be a successful approach. In
this case, macrocyclization between specific residues of the helix
occurs via a ring-closing metathesis reaction using α,α-di-
substituted amino acids with olefin tethers as building blocks.
This procedure was successfully used to stabilize the Bid BH3
peptide (6 in Figure 6), proving to be helical, protease-resistant,
and cell-permeable molecules that bound with increased affinity
to multidomain Bcl-2 member pockets (Walensky et al., 2004).
However, not every stapled BH3 helix exhibits improved
bioactivity, which requires the synthesis and testing of a set of
modified peptides to identify suitable candidates. Other types of
staples have also been used. For example, bisaryl cross-linkers
have been used recently to reinforce peptide helices containing
two cysteines at positions i and i+7. This approach has been used
for the stabilization of the Noxa BH3 peptide (7 in Figure 6),
showing a potent cell-killing activity in Mcl-1-overexpressing
cancer cells (Muppidi et al., 2012). After an optimization process,
the final molecule exhibits increased helicity in regard to the
native peptide and an improved pharmacokinetic profile
including cell permeability and proteolytic stability.

A different strategy focuses on finding small-molecule mimics
of the BH3 domains (Roy et al., 2014; Yap et al., 2017). Despite
a-helix mimics have been reported (Yap et al., 2017), most of the
BH3 mimetics have been discovered from an optimization
process that started with a hit identified by high throughput
screening, followed a hit-to-lead structure-based optimization
process helped with biophysical techniques and computational
methods. Hits identified from natural products libraries include
antimycin A3 (Tzung et al., 2001), gossypol and purpurogallin
(Kitada et al., 2003), epigallocatechin gallate and theaflavinin or
the alkaloid prodigiosin (Chang et al., 2011). On the other hand,
hits found in commercial libraries include BH3I-1 and BH3I-2

(Degterev et al., 2001). Gossypol was used as starting structure to
discover interesting Bcl-2 inhibitors (Becattini et al., 2004) like
sabutoclax (8 in Figure 7) (Wei et al., 2010) or TW-37 (9 in
Figure 7) (Wang et al., 2006). Similarly, prodigiosin was used as
starting molecule to discover obatoclax (10 in Figure 7), an
inhibitor of pro-survival members of the Bcl-2 family that
antagonize Bax or Bak, causing cytotoxicity. The compound
has gone through several clinical II studies for the treatment
of patients with solid tumors and hematopoietic malignancies
(Shoemaker et al., 2006). On the other hand, optimization of
BH3I-1 led to the discovery of WL-276 (11 in Figure 7) (Wang
et al., 2008) with a similar inhibitory activity against Bcl-2 and
enhanced inhibitory activity against Bcl-XL as compared with
gossypol. In contrast, WL-276 effectively induces apoptosis in
PC-3 cells at low micromolar concentrations. Similarly, the
compound WEHI-539 (12 in Figure 7) was optimized from a
hit identified in high throughput screening following a structure-
guided approach. The compound exhibits high affinity and
selectivity for BCL-XL and potently kills cells by selectively
antagonizing its pro-survival activity (Lessene et al., 2013).

A NMR spectroscopy based fragment screening approach
coupled with computational studies was also used to discover
other small-molecule inhibitors of Bcl-2. Specifically, these
studies led to the discovery of ABT- 737 (13 in Figure 8)
(Oltersdof et al., 2005), a potent small-molecule inhibitor of
Bcl-2, Bcl-xL, and Bcl-w. Although the compound is not orally
available, it exhibits an acceptable pharmacokinetic profile when
administered intraperitoneally. The crystallographic structure of
the complex with Bcl-xL (Lee et al., 2007) shows ABT-737 sitting
on the hydrophobic BH3 binding cleft as expected from its design
(Figure 9). Further optimization of the molecule led to the
discovery of the orally bioavailable Navitoclax (ABT-263) (14

FIGURE 6 | Chemical structures of diverse stapled analogs of the BH3 domain.
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in Figure 8) (Tse et al., 2008). Both compounds are
peptidomimetics of the Bad-BH3 domain, so they are potent
binders of Bcl-2, Bcl-xL and Bcl-w, but not to Mcl-1 or Bfl1/A1,
exhibiting a demonstrated antitumor activity in vitro and in vivo.
While clinical responses with navitoclax were promising,

mechanistic dose-limiting thrombocytopoenia was observed in
patients under treatment due to Bcl-xL inhibition in platelets.
Further studies were undertaken to remove the undesired side
effects, leading in the discovery of venetoclax (ABT-199) (15 in
Figure 8) (Pan et al., 2014), a highly selective Bcl-2 inhibitor that

FIGURE 7 | Chemical structures of diverse small molecule mimics of the BH3 domain. Sabutoclax (8); TW-37 (9); obatoclax (10); WL-276 (11); WEHI-539 (12).

FIGURE 8 | Chemical structures of diverse small molecule mimics of the BH3 domain. ABT-737 (13); Navitoclax (ABT-263) (14); venetoclax (ABT-199) (15); BM-
975 (16); AZD4320 (17).
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was approved by the US FDA in April 2016 as a second-line
treatment for chronic lymphocytic leukemia. Inspired by ABT-
737, a series of inhibitors with a 4,5-diphenyl-1H-pyrrole-3-
carboxylic acid as core structure have been developed. Among
them, compound BM-957 (16 in Figure 8) that binds to Bcl-2 and
Bcl-xL with high affinity and shows potent activity in cell growth
inhibition in small-cell lung cancer cell lines like the H1147 and
H146 (Chen et al., 2012). Also inspired by ABT-737 and following
a structure based process, AZD4320 (17 in Figure 8) was recently
developed (Balachander et al., 2020). This is a dual inhibitor of
Bcl-2 and Bcl-xL that minimizes Bcl-xL–mediated
thrombocytopenia. The compound has been used satisfactorily
to design AZD0466, a drug-dendrimer conjugate, where
AZD4320 is chemically conjugated to a PEGylated poly-lysine
dendrimer (Patterson et al., 2021).

INTEGRINS AND TISSUE ENGINEERING

Integrins orchestrate cell–cell and cell–extracellular matrix adhesive
interactions from embryonic development to mature tissue function
involving PPIs with other proteins located in the extracellular matrix
(ECM) of tissues (Barczyk et al., 2010). The ECM refers to different
molecules that are secreted by cells, mainly polysaccharides, small
molecules and proteins, that serve as matrix that provide structural
and biochemical support to the surrounding cells (Frantz et al.,
2010). Such interactions occur naturally in native tissues and can be
altered in the presence of injuries or damaged tissues. In this context,
and in order to allow tissue regeneration, the discipline of tissue

engineering has emerged in order to guide cells, tissues and
ultimately, organs, to recover their function (Langer and Vacanti,
1993). However, integrins not only play an important role in
regulating cell adhesion, but also function as integral
transmembrane signaling molecules in the regulation of cellular
behavior such as organization of the intracellular cytoskeleton,
regulation of the cell cycle or movement of new receptors to the
cell membrane (Giancotti and Ruoslahti, 1999; Kadry and
Calderwood, 2020). They are also involved in blood coagulation
and in pathophysiological processes such as tumor growth,
metastasis, or angiogenesis. Specific functions of integrins have
been exploited for therapeutical intervention. Thus, diverse PPIs
disruptors have been designed for the treatment of thrombosis,
stroke and myocardial ischemia (Scarborough and Gretler, 2000) or
for the treatment of cancer and osteoporosis (Auzzas et al., 2010). On
the other hand, knowledge of the nature of the PPIs involved with
the ECM can be used tomimic integrin ligands in tissue engineering.

Integrins are heterodimers integral transmembrane proteins
composed of α and β subunits that modulate the association
between the extracellular matrix and the cytoskeleton. More than
twenty different α/β heterodimeric integrins have been recognized,
resulting from the combination of eighteen α and eight β subunits
(Hynes 2002; Barczyk et al., 2010). The most widely studied
members of this subgroup have in common a β3 subunit.
Specifically, the platelet receptor αIIbβ3 that binds fibrinogen,
involved in the blood coagulation process and, the fibronectin
receptor αvβ3 that binds a wide variety of ligands and is up-
regulated in many solid tumors contributing to the mechanisms
involved in tumor growth and metastatic dissemination. Integrins
signaling is initiated by binding to different proteins in the ECM
including fibronectin, laminin, vitronectin, collagen or cell-surface
receptors such as intercellular adhesion molecule-1 (ICAM-1) and
vascular cell-adhesion molecule-1 (VCAM-1).

Integrins and ECM proteins PPIs occur via short peptide linear
bindingmotifs (Ruoslahti, 1996). One of thesemotifs is the sequence
Arg-Gly-Asp (RGD), common to a subgroup of eight integrins that
was the object of study for designing inhibitors of platelet
aggregation. The RGD motif is not a potent inhibitor of αIIbβ3
in platelet aggregation assays. However, extension with an amino
acid at the C-terminal significantly enhances the inhibitory activity
of these peptides (Pierschbacher and Ruoslahti, 1984). Subsequent
studies by means of NMR conformational analysis and molecular
dynamics simulations led to the design of cyclic peptides embedding
the RGD sequence. These studies demonstrated that analog
selectivity for different integrins was associated with the
conformation the RGD segment attains. Specifically, the distance
between the basic arginine side chain and the acid aspartic side chain
controlled by the conformation of the macrocycle. In the αIIbβ3
selective pentacyclic peptides the peptide adopts a conformation
with a β-turn centered on Gly together with a distorted type II′
β-turn involving the two other residues at the i+1 and i+2 positions,
respectively (Müller et al., 1994). On the other hand, pentacyclic
peptides selective for the αvβ3 receptor exhibit a reverse β-turn
centered on the Asp residue and a distorted type II′-β turn with Gly
and Asp at the i+1 and i+2 positions, respectively. In the case of the
hexacyclic peptides, selectivity could be shifted from αIIbβ3 to αvβ3
by forcing the conformation attained by the peptide from a type II′

FIGURE 9 | 3D structure of the complex Bcl-xL/ABT-737 (PDB ID:
5MFK).
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to a type I β-turn conformation. This forces the arginine side chain
either to adopt a pseudoequatorial orientation or to be raised above
the plane of the backbone in a pseudoaxial orientation, respectively
(Bach et al., 1996). These studies led to the discovery of selective
antagonists of the αIIbβ3 and αvβ3 receptors (Andronati et al., 2004;
Auzzas et al., 2010) including the commercially available cyclic
heptapeptide eptifibatide, a potent αIIbβ3 selective antagonist
(Scarborough et al., 1993), and the cyclic pentapeptide cilengitide,
a potent αvβ3 selective antagonist (Dechantsreiter et al., 1999).

The concept of tissue engineering aims at stimulating the
regeneration of a damaged tissue (Perez et al., 2015). For this
purpose, the combination of three main elements is essential in
order to provide the appropriate signaling to induce the desired
effect (Perez et al., 2013). The three key elements are: scaffolds, short
linear peptide motifs and cells. The aim of these three main
components is to mimic to the maximum extent the situation
that takes place in natural tissue healing (Perez et al., 2015). In
this sense, the scaffold serves as a matrix that presents similar
characteristics to the natural extracellular matrix of tissues. The
scaffold can be loaded withmolecules involved in the regeneration of
the tissues, which depending on the tissues, can involve growth
factors, cytokines or drugs (Garg et al., 2012). Finally, these
constructs will allow the attachment, proliferation and
differentiation of cells that will ultimately, once implanted in the
site of defect, guide the surrounding tissues to induce new tissue
formation. Among the three different elements, scaffolds play a
pivotal role in providing the appropriate cues to allow the interplay
between cells and tissue with the scaffolds itself (Perez et al., 2013).

Scaffolds can be composed of different types of materials, which
can be from polymeric origin, ceramics or metallic (O’Brien, 2011).
The selection of thematerials willmainly depend on the targeted tissue
to be regenerated, using soft materials (polymers) for soft tissues such
as neuronal tissues and cartilage, and stiff materials (ceramics and
metals) for hard tissues, mainly bone (Engler et al., 2006). In all cases,
these scaffolds need to mimic to some extent the ECM. In order to
replicate the attachment of cells onto the ECM, synthetic materials
need to provide similar ECM cues to allow the protein-protein
interaction that will eventually lead to cell attachment and guide
cells into the regeneration processes (Perez et al., 2013). Hence, the
scaffolds, if properly selected, can act as mediator and guidance for the
regeneration of tissues. For this purpose, the scaffolds themselves can
be composed of natural proteins which possess cell recognition sites
(epitopes) that will allow the interaction with cells, or they can be
designed as a non-protein origin (Dhandayuthapani et al., 2011). In
the latter case, it is essential to provide within the scaffolds certain cues
to allow cell-material interaction (Tallawi et al., 2015). For this
purpose, several domains can be covalently attached on the surface
of the materials, such as proteins, peptides, drugs or growth factors to
name a few. Generally speaking, proteins present certain cell
instructive domains that will allow the recognition by cells and
allow interaction. Nevertheless, the presence of proteins within the
body can induce non-desired effects such as an acute immune
response. Furthermore, as proteins are big molecules, their epitopes
need to be properly exposed for cells to interact, otherwise their
positive effect can be neglected. Taking this into account, peptides have
appeared as domains that can be used as well, allowing only using the
specific amino acid sequence that is active for cell adhesion or cell

guidance with the added value that will prevent from any immune
response andwill be easily allocated in the propermanner to allow cell
interaction (Perez et al., 2013; Tallawi et al., 2015; Klimek and
Ginalska, 2020).

Regarding the short linear peptide motifs, there have been a
number of epitopes discovered to have relevant properties in
specific cell functionalities. The most widely known amino acid
sequence is RGD (Arg-Gly-Asp), which is an amino acid
sequence found in several ECM proteins, such as collagen,
laminin, fibronectin or vitronectin, mainly having key role in
cell adhesion (Jeschke et al., 2002; Petrie et al., 2008; Von Der
Mark et al., 2010). Several peptides possess similar potential to
allow cell adhesion, such as PHSRN and YIGSR (Fittkau et al.,
2005). There are other amino acid sequences with different
potential and with more specific targets. For instance, IKVAV,
which is an epitope from the α-1 laminin chain, enhances cell
growth, neuronal differentiation and nerve regeneration (Patel
et al., 2019). In a similar way, KLPGWSG induces as well
neuronal differentiation (Caprini et al., 2013). While these
peptides are related with ECM proteins, other peptides have
mimicked specific growth factors, such as bone morphogenetic
protein, vascular endothelial growth factors or brain derived
neurotrophic factors. These growth factors are molecules that
are released from cells into the ECM and have great therapeutic
potential. In this sense, peptide such as KPSS, KLT and RGI are
able to regulate bone regeneration, angiogenesis and nerve
regeneration respectively (Ding et al., 2020).

Despite general knowledge on how certain epitopes are able to
guide cell behavior, there are still undiscovered number of
epitopes that could provide similar potential to those already
known. While these epitopes could be empirically and
experimentally discovered, this would be both time consuming
and not cost-effective. For this reason, computational strategies
open a window of unlimited epitope discovery that will more
finally tune tissue guidance. Up to now, sequences are not taken
into account as cell specific, or in other words, as integrins
specific, since not all cells present that same cell membrane
integrins. Discovering among the selective interactions of
certain integrins with specific peptides may be of great potential.

OPPORTUNITIES FOR COMPUTATIONAL
APPROACHES IN TISSUE ENGINEERING

A straightforward application of the principles described in the cases
of p53 and bcl2 into tissue engineering is the identification of
naturally occuring binding modes and interactions between ECM
elments and integrins. This knowledge can lead to the identification
of functional peptide motifs that have not currently been identified
and the design of new chemical molecules that bind certain integrins
specifically. As an example, the RGD motif has been characterized
using computational and experimental tools due to its ability to bind
different integrin types. However, the interplay of internal structure
of the motif and binding mode give rise to nuances in the binding
and recognition (Dechantsreiter et al., 1999; Kapp et al., 2017). Thus,
the presence of an RGDmotif inside a particular scaffoldmight force
conformations of the motif that are only recognized by a subset of
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integins. A hybrid computational and experimental approach used
metadynamics based sampling to design a small molecule antagonist
(RUC-1) that is specific to only one type of integrin (Zhu et al., 2010).
The native RGD antagonist binds different integrins and induces a
conformational change between a closed and an open state; whereas
the RUC-1 antagonist binds only in the αIIbβ3 integrin without
inducing a change between the closed and open state (Zhu et al.,
2010). Other computational approaches target membrane proteins
like integrins by optimizing the sequence of the peptide epitope that
binds the membrane receptors (Yin et al., 2007; Shandler et al.,
2011).

A second area of interest is in the development of material that
self-assembles to provide a scaffold for cells. A common strategy
is to use self-assembling peptides that can from hydrogels on
injection into a patient–thus localizing to a specific region in the
body (Wade et al., 2012; Loo et al., 2015). There are several
approaches to achieve molecular self-assembly which have been
previously described experimentally (Loo et al., 2015), many of
which rely on peptide sequences. These self-assembling peptides
should have a sequence capable of self-assembling, while at the
same time carrying a sequence motif that is accessible and
recognizable by integrins, to dictate their behavior (see
Figure 10). This is a chance for computational approaches to
carry out systematic analysis of optimal sequence design to
achieve specific mechanical properties (e.g., mechanical
stiffness), and rational optimization for active and accessible
conformations of the integrin-binding motifs. Smadbeck and
co-workers designed short peptide motifs that were able to
self-assemble and did a posterior characterization using
experimental approaches (Smadbeck et al., 2014), a second
strategy is based on using proteins that fold into stable
structures and then self-assemble (Chen et al., 2019). Despite
these successes in computational design, many hybrid approaches
rely on an experimental design followed by computational
characterization, typically with molecular dynamics (Cormier
et al., 2013; Leonard et al., 2013). The accumulated knowledge
on peptides secondary structure propensities (Jones, 1999;
Moreau et al., 2009; Best et al., 2012), protein structure and
assembly prediction (Lensink et al., 2007; Moult et al., 1995) and

design principles (Simons et al., 1999; Delgado et al., 2019) can
provide useful insights in this area of research.

CONCLUSION

Computational and modeling approaches have long been involved in
rational drug discovery. As the methods have matured, new
opportunities emerge to model other types of molecules that can be
beneficial as drugs, such as peptides. The challenges for computational
methods continue to be related to sampling, scoring and the nature of
the system under study. In systems where the protein receptor and
ligand are rigid, predicting bound conformations is less challenging,
and the quality of the scoring function dictates the accuracy of the
predictions. As the systems become more flexible (both protein and
ligand) requiring large conformational transitions and ability to bind
through several possible binding modes, the interplay between
sampling and scoring becomes more relevant to account not only
for direct interactions but the ability to adopt bound conformations.
General strategies for design include maximizing peptide interactions
in the bound conformation and deriving peptidomimetic or small
molecule solutions that maintain the interaction profile while reducing
the internal flexibility of the ligand. We have highlighted opportunities
to apply these methods to the field of tissue engineering, where recent
advances in structure prediction can play a big role.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

FUNDING

JJP likes to thank the Government of Catalonia (2017 SGR 163)
and the Instituto de Salud Carlos III (COV20/00052) for financial
support. AP is thankful for a seed grant from the University of
Florida Informatics Institute (00130138). RAP is thankful for the

FIGURE 10 | Tissue engineering overview. (A) The surface of a cell is covered with different types of integrin proteins, which recognize molecular queues in the
extracellular matrix (ECM) environment. (B) The ECM is composed of diverse biological components, such as collagen fibers, which can interact with integrins through
specific amino acid sequences (e.g., GFOGER in the example, pdbid 1dzi). (C) The goal in tissue engineering is to designmaterials, such as self-assembling peptides that
provide an ECM scaffold and chemical queues that can trigger cellular behavior.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161714

Perez et al. Peptide Computational Modeling for PPIs

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


funds provided by the Government of Catalonia (2017 SGR 708),
the Spanish Ministry of Science and Innovation (Ramón y Cajal

fellowship (RYC2018-025977-I) and project RTI2018-096088-
J-100 (MINECO/FEDER).

REFERENCES

Adams, J. M., and Cory, S. (1998). The Bcl-2 Protein Family: Arbiters of Cell
Survival. Science 281, 1322–1326. doi:10.1126/science.281.5381.1322

Aderinwale, T., Christoffer, C. W., Sarkar, D., Alnabati, E., and Kihara, D. (2020).
Computational Structure Modeling for Diverse Categories of Macromolecular
Interactions. Curr. Opin. Struct. Biol. 64, 1–8. doi:10.1016/j.sbi.2020.05.017

Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G., and Raghava, G. P. S.
(2019). Benchmarking of Different Molecular Docking Methods for Protein-
Peptide Docking. BMC Bioinformatics 19, 426. doi:10.1186/s12859-018-2449-y

Aiyer, S., Swapna, G. V. T., Ma, L. C., Liu, G., Hao, J., Chalmers, G., et al. (2021). A
Common Binding Motif in the ET Domain of BRD3 Forms Polymorphic
Structural Interfaces with Host and Viral Proteins. Struct. S0969- 2126,
00010–00011. doi:10.1016/j.str.2021.01.010

Akram, O. N., DeGraff, D. J., Sheehan, J. H., Tilley, W. D., Matusik, R. J., Ahn, J.-M.,
et al. (2014). Tailoring Peptidomimetics for Targeting Protein-Protein Interactions.
Mol. Cancer Res. 12, 967–978. doi:10.1158/1541-7786.mcr-13-0611

Alam, N., Goldstein, O., Xia, B., Porter, K. A., Kozakov, D., and Schueler-Furman,
O. (2017). High-resolution Global Peptide-Protein Docking Using Fragments-
Based PIPER-FlexPepDock. Plos Comput. Biol. 13, e1005905. doi:10.1371/
journal.pcbi.1005905

Alonso, H., Bliznyuk, A. A., and Gready, J. E. (2006). Combining Docking and
Molecular Dynamic Simulations in Drug Design. Med. Res. Rev. 26, 531–568.
doi:10.1002/med.20067

Amaro, R. E., Baudry, J., Baudry, J., Chodera, J., Demir, Ö., McCammon, J. A., et al.
(2018). Ensemble Docking in Drug Discovery. Biophysical J. 114, 2271–2278.
doi:10.1016/j.bpj.2018.02.038

Andronati, S. A., Karaseva, T. L., and Krysko, A. A. (2004). Peptidomimetics -
Antagonists of the Fibrinogen Receptors: Molecular Design, Structures,
Properties and Therapeutic Applications. Curr. Med. Chem. 11, 1183–1211.
doi:10.2174/0929867043365314

Andrusier, N., Mashiach, E., Nussinov, R., and Wolfson, H. J. (2008). Principles of
Flexible Protein-Protein Docking. Proteins 73, 271–289. doi:10.1002/prot.
22170

Antes, I. (2010). DynaDock: A New Molecular Dynamics-Based Algorithm for
Protein-Peptide Docking Including Receptor Flexibility. Proteins 78,
1084–1104. doi:10.1002/prot.22629

Antunes, D. A., Moll, M., Devaurs, D., Jackson, K. R., Lizée, G., and Kavraki, L. E.
(2017). DINC 2.0: A New Protein–Peptide Docking Webserver Using an
Incremental Approach. Cancer Res. 77, e55–e57. doi:10.1158/0008-5472.can-
17-0511

Arkin, M. R., Tang, Y., and Wells, J. A. (2014). Small-Molecule Inhibitors of
Protein-Protein Interactions: Progressing toward the Reality. Chem. Biol. 21,
1102–1114. doi:10.1016/j.chembiol.2014.09.001

Auzzas, L., Zanardi, F., Battistini, L., Burreddu, P., Carta, P., Rassu, G., et al. (2010).
Targeting αvβ3 Integrin: Design and Applications of Mono- and
Multifunctional RGD-Based Peptides and Semipeptides. Cmc 17, 1255–1299.
doi:10.2174/092986710790936301

Bach, A. C., Espina, J. R., Jackson, S. A., Stouten, P. F. W., Duke, J. L., Mousa, S. A.,
et al. (1996). Type II’ to Type I β-Turn Swap Changes Specificity for Integrins.
J. Am. Chem. Soc. 118, 293–294. doi:10.1021/ja953163+

Balachander, S. B., Criscione, S. W., Byth, K. F., Cidado, J., Adam, A., Lewis, P.,
et al. (2020). AZD4320, A Dual Inhibitor of Bcl-2 and Bcl-xL, Induces Tumor
Regression in Hematologic Cancer Models without Dose-Limiting
Thrombocytopenia. Clin. Cancer Res. 26, 6535–6549. doi:10.1158/1078-0432.
ccr-20-0863

Barczyk, M., Carracedo, S., and Gullberg, D. (2010). Integrins. Cell Tissue Res 339,
269–280. doi:10.1007/s00441-009-0834-6

Becattini, B., Kitada, S., Leone, M., Monosov, E., Chandler, S., Zhai, D., et al. (2004).
Rational Design and Real Time, In-Cell Detection of the Proapoptotic Activity
of a Novel Compound Targeting Bcl-XL. Chem. Biol. 11, 389–395. doi:10.1016/
j.chembiol.2004.02.020

Berman, H. M., Battistuz, T., Bhat, T. N., Bluhm, W. F., Bourne, P. E., Burkhardt,
K., et al. (2000). The Protein Data Bank. Nucl. Acids Res. 28, 235–242. doi:10.
1093/nar/28.1.235

Bernal, F., Tyler, A. F., Korsmeyer, S. J., Walensky, L. D., and Verdine, G. L. (2007).
Reactivation of the P53 Tumor Suppressor Pathway by a Stapled P53 Peptide.
J. Am. Chem. Soc. 129, 2456–2457. doi:10.1021/ja0693587

Best, R. B., de Sancho, D., and Mittal, J. (2012). Residue-Specific α-Helix
Propensities from Molecular Simulation. Biophysical J. 102, 1462–1467.
doi:10.1016/j.bpj.2012.02.024

Boersma, M. D., Haase, H. S., Peterson-Kaufman, K. J., Lee, E. F., Clarke, O. B.,
Colman, P. M., et al. (2012). Evaluation of Diverse α/β-Backbone Patterns for
Functional α-Helix Mimicry: Analogues of the Bim BH3 Domain. J. Am. Chem.
Soc. 134, 315–323. doi:10.1021/ja207148m

Borcherds, W., Theillet, F.-X., Katzer, A., Finzel, A., Mishall, K. M., Powell, A. T.,
et al. (2014). Disorder and Residual Helicity Alter P53-Mdm2 Binding Affinity
and Signaling in Cells. Nat. Chem. Biol. 10, 1000–1002. doi:10.1038/nchembio.
1668

Bowman, A. L., Nikolovska-Coleska, Z., Zhong, H., Wang, S., and Carlson, H. A.
(2007). Small Molecule Inhibitors of the MDM2-P53 Interaction Discovered by
Ensemble-Based Receptor Models. J. Am. Chem. Soc. 129, 12809–12814. doi:10.
1021/ja073687x

Bowman, G. R., Ensign, D. L., and Pande, V. S. (2010). Enhanced Modeling via
Network Theory: Adaptive Sampling of Markov State Models. J. Chem. Theor.
Comput. 6, 787–794. doi:10.1021/ct900620b

B-Rao, C., Subramanian, J., and Sharma, S. D. (2009). Managing Protein Flexibility
in Docking and its Applications. Drug Discov. TodayToday 14, 394–400. doi:10.
1016/j.drudis.2009.01.003

Bruzzoni-Giovanelli, H., Alezra, V., Wolff, N., Dong, C.-Z., Tuffery, P., and
Rebollo, A. (2018). Interfering Peptides Targeting Protein-Protein
Interactions: the Next Generation of Drugs?. Drug Discov. Today 23,
272–285. doi:10.1016/j.drudis.2017.10.016

Bueren-Calabuig, J. A., and Michel, J. (2015). Elucidation of Ligand-dependent
Modulation of Disorder-Order Transitions in the Oncoprotein MDM2. Plos
Comput. Biol. 11, e1004282. doi:10.1371/journal.pcbi.1004282

Burgess, A., Chia, K. M., Haupt, S., Thomas, D., Haupt, Y., and Lim, E. (2016).
Clinical Overview of MDM2/X-Targeted Therapies. Front. Oncol 6, 7. doi:10.
3389/fonc.2016.00007

Campbell, S. T., Carlson, K. J., Buchholz, C. J., Helmers, M. R., and Ghosh, I.
(2015). Mapping the BH3 Binding Interface of Bcl-xL, Bcl-2, and Mcl-1 Using
Split-Luciferase Reassembly. Biochemistry 54, 2632–2643. doi:10.1021/
bi501505y

Caprini, A., Silva, D., Zanoni, I., Cunha, C., Volontè, C., Vescovi, A., et al. (2013). A
Novel Bioactive Peptide: Assessing its Activity over Murine Neural Stem Cells
and its Potential for Neural Tissue Engineering. New Biotechnol. 30, 552–562.
doi:10.1016/j.nbt.2013.03.005

Carvajal, L. A., Neriah, D. B., Senecal, A., Benard, L., Thiruthuvanathan, V.,
Yatsenko, T., et al. (2018). Dual Inhibition of MDMX and MDM2 as a
Therapeutic Strategy in Leukemia. Sci. Transl. Med. 10, eaao3003. doi:10.
1126/scitranslmed.aao3003

Cesa, L. C., Mapp, A. K., and Gestwicki, J. E. (2015). Direct and Propagated Effects
of Small Molecules on Protein-Protein Interaction Networks. Front. Bioeng.
Biotechnol. 3, 119. doi:10.3389/fbioe.2015.00119

Chang, C.-C., Chen, W.-C., Ho, T.-F., Wu, H.-S., and Wei, Y.-H. (2011).
Development of Natural Anti-tumor Drugs by Microorganisms. J. Biosci.
Bioeng. 111, 501–511. doi:10.1016/j.jbiosc.2010.12.026

Chang, Y. S., Graves, B., Guerlavais, V., Tovar, C., Packman, K., To, K.-H., et al.
(2013). Stapled α−helical Peptide Drug Development: A Potent Dual Inhibitor
of MDM2 and MDMX for P53-dependent Cancer Therapy. Proc. Natl. Acad.
Sci. USA 110, E3445–E3454. doi:10.1073/pnas.1303002110

Chen, L., Willis, S. N., Wei, A., Smith, B. J., Fletcher, J. I., Hinds, M. G., et al. (2005).
Differential Targeting of Prosurvival Bcl-2 Proteins by Their BH3-Only Ligands
Allows Complementary Apoptotic Function. Mol. Cel 17, 393–403. doi:10.
1016/j.molcel.2004.12.030

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161715

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1126/science.281.5381.1322
https://doi.org/10.1016/j.sbi.2020.05.017
https://doi.org/10.1186/s12859-018-2449-y
https://doi.org/10.1016/j.str.2021.01.010
https://doi.org/10.1158/1541-7786.mcr-13-0611
https://doi.org/10.1371/journal.pcbi.1005905
https://doi.org/10.1371/journal.pcbi.1005905
https://doi.org/10.1002/med.20067
https://doi.org/10.1016/j.bpj.2018.02.038
https://doi.org/10.2174/0929867043365314
https://doi.org/10.1002/prot.22170
https://doi.org/10.1002/prot.22170
https://doi.org/10.1002/prot.22629
https://doi.org/10.1158/0008-5472.can-17-0511
https://doi.org/10.1158/0008-5472.can-17-0511
https://doi.org/10.1016/j.chembiol.2014.09.001
https://doi.org/10.2174/092986710790936301
https://doi.org/10.1021/ja953163+
https://doi.org/10.1158/1078-0432.ccr-20-0863
https://doi.org/10.1158/1078-0432.ccr-20-0863
https://doi.org/10.1007/s00441-009-0834-6
https://doi.org/10.1016/j.chembiol.2004.02.020
https://doi.org/10.1016/j.chembiol.2004.02.020
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1021/ja0693587
https://doi.org/10.1016/j.bpj.2012.02.024
https://doi.org/10.1021/ja207148m
https://doi.org/10.1038/nchembio.1668
https://doi.org/10.1038/nchembio.1668
https://doi.org/10.1021/ja073687x
https://doi.org/10.1021/ja073687x
https://doi.org/10.1021/ct900620b
https://doi.org/10.1016/j.drudis.2009.01.003
https://doi.org/10.1016/j.drudis.2009.01.003
https://doi.org/10.1016/j.drudis.2017.10.016
https://doi.org/10.1371/journal.pcbi.1004282
https://doi.org/10.3389/fonc.2016.00007
https://doi.org/10.3389/fonc.2016.00007
https://doi.org/10.1021/bi501505y
https://doi.org/10.1021/bi501505y
https://doi.org/10.1016/j.nbt.2013.03.005
https://doi.org/10.1126/scitranslmed.aao3003
https://doi.org/10.1126/scitranslmed.aao3003
https://doi.org/10.3389/fbioe.2015.00119
https://doi.org/10.1016/j.jbiosc.2010.12.026
https://doi.org/10.1073/pnas.1303002110
https://doi.org/10.1016/j.molcel.2004.12.030
https://doi.org/10.1016/j.molcel.2004.12.030
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Chen, J., Zhou, H., Aguilar, A., Liu, L., Bai, L., McEachern, D., et al. (2012).
Structure-Based Discovery of BM-957 as a Potent Small-Molecule Inhibitor of
Bcl-2 and Bcl-xL Capable of Achieving Complete Tumor Regression. J. Med.
Chem., 55, 8502–8514.doi:10.1021/jm3010306

Chen, Z., Johnson, M. C., Chen, J., Bick, M. J., Boyken, S. E., Lin, B., et al. (2019).
Self-Assembling 2D Arrays with De Novo Protein Building Blocks. J. Am.
Chem. Soc. 141, 8891–8895. doi:10.1021/jacs.9b01978

Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J., and Green, D. R. (2010).
The Bcl-2 Family Reunion. Mol. Cel 37, 299–310. doi:10.1016/j.molcel.2010.
01.025

Chittenden, T. (2002). BH3 Domains: Intracellular Death-Ligands Critical for
Initiating Apoptosis. Cancer Cell 2, 165–166. doi:10.1016/s1535-6108(02)
00128-9

Chou, J. J., Li, H., Salvesen, G. S., Yuan, J., and Wagner, G. (1999). Solution
Structure of Bid, an Intracellular Amplifier of Apoptotic Signaling. Cell 96,
615–624. doi:10.1016/s0092-8674(00)80572-3

Ciemny, M. P., Debinski, A., Paczkowska, M., Kolinski, A., Kurcinski, M., and
Kmiecik, S. (2016). Protein-peptide Molecular Docking with Large-Scale
Conformational Changes: the P53-MDM2 Interaction. Sci. Rep. 6, 37532.
doi:10.1038/srep37532

Ciemny, M., Kurcinski, M., Kurcinski, M., Kamel, K., Kolinski, A., Alam, N., et al.
(2018). Protein-peptide Docking: Opportunities and Challenges. Drug Discov.
Today 23, 1530–1537. doi:10.1016/j.drudis.2018.05.006

Clackson, T., and Wells, J. (1995). A Hot Spot of Binding Energy in a Hormone-
Receptor Interface. Science 267, 383–386. doi:10.1126/science.7529940

Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H.-X., and Paravastu, A. K.
(2013). Molecular Structure of RADA16-I Designer Self-Assembling Peptide
Nanofibers. ACS Nano 7, 7562–7572. doi:10.1021/nn401562f

Czabotar, P. E., Lessene, G., Strasser, A., and Adams, J. M. (2014). Control of
Apoptosis by the Bcl-2 Protein Family: Implications for Physiology and
Therapy. Nat. Rev. Mol. Cel Biol. 15, 49–63. doi:10.1038/nrm3722

Das, A. A., Sharma, O. P., Kumar, M. S., Krishna, R., and Mathur, P. P. (2013).
PepBind: A Comprehensive Database and Computational Tool for Analysis of
Protein-Peptide Interactions. Genomics, Proteomics & Bioinformatics 11,
241–246. doi:10.1016/j.gpb.2013.03.002

Day, C. L., Chen, L., Richardson, S. J., Harrison, P. J., Huang, D. C. S., and Hinds,
M. G. (2005). Solution Structure of Prosurvival Mcl-1 and Characterization of
its Binding by Proapoptotic Bh3-Only Ligands. J. Biol. Chem. 280, 4738–4744.
doi:10.1074/jbc.m411434200

Day, C. L., Smits, C., Fan, F. C., Lee, E. F., Fairlie, W. D., and Hinds, M. G. (2008).
Structure of the BH3 Domains from the P53-Inducible BH3-Only Proteins
Noxa and Puma in Complex with Mcl-1. J. Mol. Biol. 380, 958–971. doi:10.
1016/j.jmb.2008.05.071

de Vries, S. J., Rey, J., Schindler, C. E. M., Zacharias, M., and Tuffery, P. (2017). The
pepATTRACT Web Server for Blind, Large-Scale Peptide-Protein Docking.
Nucleic Acids Res. 45, W361–W364. doi:10.1093/nar/gkx335

Dechantsreiter, M. A., Planker, E., Mathä, B., Lohof, E., Hölzemann, G., Jonczyk,
A., et al. (1999). N-methylated Cyclic RGD Peptides as Highly Active and
Selective αVβ3Integrin Antagonists. J. Med. Chem. 42, 3033–3040. doi:10.1021/
jm970832g

Degterev, A., Lugovskoy, A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T.,
et al. (2001). Identification of Small-Molecule Inhibitors of Interaction between
the BH3 Domain and Bcl-xL. Nat. Cel. Biol. 3, 173–182. doi:10.1038/35055085

Delgado, J., Radusky, L. G., Cianferoni, D., and Serrano, L. (2019). FoldX 5.0:
Working with RNA, Small Molecules and a New Graphical Interface.
Bioinformatics 35, 4168–4169. doi:10.1093/bioinformatics/btz184

Delgado-Soler, L., del Mar Orzaez, M., and Rubio-Martinez, J. (2013). Structure-based
Approach to the Design of BakBH3 Mimetic Peptides with Increased Helical
Propensity. J. Mol. Model., 19, 4305–4318.doi:10.1007/s00894-013-1944-3

Denis, C., Sopková-de Oliveira Santos, J., Bureau, R., and Voisin-Chiret, A. S.
(2020). Hot-Spots of Mcl-1 Protein. J. Med. Chem. 63, 928–943. doi:10.1021/
acs.jmedchem.9b00983

Dhandayuthapani, B., Yoshida, Y., Maekawa, T., and Kumar, D. S. (2011).
Polymeric Scaffolds in Tissue Engineering Application: A Review. Int.
J. Polym. Sci., 2011, 290602. doi:10.1155/2011/290602

Ding, Q., Zhang, Z., Liu, J.-J., Jiang, N., Zhang, J., Ross, T. M., et al. (2013).
Discovery of RG7388, a Potent and Selective P53-MDM2 Inhibitor in Clinical
Development. J. Med. Chem. 56, 5979–5983. doi:10.1021/jm400487c

Ding, X., Zhao, H., Li, Y., Lee, A. L., Li, Z., Fu, M., et al. (2020). Synthetic Peptide
Hydrogels as 3D Scaffolds for Tissue Engineering. Adv. Drug Deliv. Rev. 160,
78–104. doi:10.1016/j.addr.2020.10.005

Donsky, E., and Wolfson, H. J. (2011). PepCrawler: a Fast RRT-Based Algorithm
for High-Resolution Refinement and Binding Affinity Estimation of Peptide
Inhibitors. Bioinformatics 27, 2836–2842. doi:10.1093/bioinformatics/btr498

Elmore, S. (2007). Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol.
35, 495–516. doi:10.1080/01926230701320337

ElSawy, K. M., Lane, D. P., Verma, C. S., and Caves, L. S. D. (2016). Recognition
Dynamics of P53 andMDM2: Implications for Peptide Design. J. Phys. Chem. B
120, 320–328. doi:10.1021/acs.jpcb.5b11162

Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006). Matrix Elasticity
Directs Stem Cell Lineage Specification. Cell 126, 677–689. doi:10.1016/j.cell.
2006.06.044

Evangelista Falcon, W., Ellingson, S. R., Smith, J. C., and Baudry, J. (2019).
Ensemble Docking in Drug Discovery: How Many Protein Configurations
from Molecular Dynamics Simulations Are Needed to Reproduce Known
Ligand Binding?. J. Phys. Chem. B 123, 5189–5195. doi:10.1021/acs.jpcb.
8b11491

Faradjian, A. K., and Elber, R. (2004). Computing Time Scales from Reaction
Coordinates by Milestoning. J. Chem. Phys. 120, 10880–10889. doi:10.1063/1.
1738640

Favaloro, B., Allocati, N., Graziano, V., Di Ilio, C., and De Laurenzi, V. (2012). Role
of Apoptosis in Disease. Aging 4, 330–349. doi:10.18632/aging.100459

Fernández, R. J., Totrov, M., and Abagyan, R. (2002). Soft Protein–Protein Docking
in Internal Coordinates. Protein Sci. 11, 280–291.

Ferrari, A. M., Wei, B. Q., Costantino, L., and Shoichet, B. K. (2004). Soft Docking
and Multiple Receptor Conformations in Virtual Screening. J. Med. Chem. 47,
5076–5084. doi:10.1021/jm049756p

Fittkau, M. H., Zilla, P., Bezuidenhout, D., Lutolf, M. P., Human, P., Hubbell, J. A.,
et al. (2005). The Selective Modulation of Endothelial Cell Mobility on RGD
Peptide Containing Surfaces by YIGSR Peptides. Biomaterials 26, 167–174.
doi:10.1016/j.biomaterials.2004.02.012

Frantz, C., Stewart, K. M., and Weaver, V. M. (2010). The Extracellular Matrix at a
Glance. J. Cel Sci. 123, 4195–4200. doi:10.1242/jcs.023820

Fukunishi, H., Watanabe, O., and Takada, S. (2002). On the Hamiltonian Replica
Exchange Method for Efficient Sampling of Biomolecular Systems: Application
to Protein Structure Prediction. J. Chem. Phys. 116, 9058–9067. doi:10.1063/1.
1472510

Furet, P., Masuya, K., Kallen, J., Stachyra-Valat, T., Ruetz, S., Guagnano, V., et al.
(2016). Discovery of a Novel Class of Highly Potent Inhibitors of the P53-
MDM2 Interaction by Structure-Based Design Starting from a Conformational
Argument. Bioorg. Med. Chem. Lett. 26, 4837–4841. doi:10.1016/j.bmcl.2016.
08.010

Garg, T., Singh, O., Arora, S., andMurthy, R. S. R. (2012). Scaffold: A Novel Carrier
for Cell and Drug Delivery. Crit. Rev. Ther. Drug Carrier Syst. 29, 1–63. doi:10.
1615/critrevtherdrugcarriersyst.v29.i1.10

Giancotti, F. G., and Ruoslahti, E. (1999). Integrin Signaling. Science 285,
1028–1033. doi:10.1126/science.285.5430.1028

Gill, S. C., Lim, N. M., Grinaway, P. B., Rustenburg, A. S., Fass, J., Ross, G. A., et al.
(2018). Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid
Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte
Carlo. J. Phys. Chem. B 122, 5579–5598. doi:10.1021/acs.jpcb.7b11820

Giorgino, T., Buch, I., and De Fabritiis, G. (2012). Visualizing the Induced Binding
of SH2-Phosphopeptide. J. Chem. Theor. Comput. 8, 1171–1175. doi:10.1021/
ct300003f

Goldsmith, K. C., Liu, X., Dam, V., Morgan, B. T., Shabbout, M., Cnaan, A., et al.
(2006). BH3 Peptidomimetics Potently Activate Apoptosis and Demonstrate
Single Agent Efficacy in Neuroblastoma. Oncogene 25, 4525–4533. doi:10.1038/
sj.onc.1209489

Gonzalez, M. W., and Kann, M. G. (2012). Chapter 4: Protein Interactions and
Disease. Plos Comput. Biol. 8, e1002819. doi:10.1371/journal.pcbi.1002819

Gonzalez-Lopez de Turiso, F., Sun, D., Rew, Y., Bartberger, M. D., Beck, H. P.,
Canon, J., et al. (2013). Rational Design and Binding Mode Duality of MDM2-
P53 Inhibitors. J. Med. Chem. 56, 4053–4070. doi:10.1021/jm400293z

Gordo, S., and Giralt, E. (2009). Knitting and Untying the Protein Network:
Modulation of Protein Ensembles as a Therapeutic Strategy. Protein Sci. 18,
481–493. doi:10.1002/pro.43

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161716

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1021/jm3010306
https://doi.org/10.1021/jacs.9b01978
https://doi.org/10.1016/j.molcel.2010.01.025
https://doi.org/10.1016/j.molcel.2010.01.025
https://doi.org/10.1016/s1535-6108(02)00128-9
https://doi.org/10.1016/s1535-6108(02)00128-9
https://doi.org/10.1016/s0092-8674(00)80572-3
https://doi.org/10.1038/srep37532
https://doi.org/10.1016/j.drudis.2018.05.006
https://doi.org/10.1126/science.7529940
https://doi.org/10.1021/nn401562f
https://doi.org/10.1038/nrm3722
https://doi.org/10.1016/j.gpb.2013.03.002
https://doi.org/10.1074/jbc.m411434200
https://doi.org/10.1016/j.jmb.2008.05.071
https://doi.org/10.1016/j.jmb.2008.05.071
https://doi.org/10.1093/nar/gkx335
https://doi.org/10.1021/jm970832g
https://doi.org/10.1021/jm970832g
https://doi.org/10.1038/35055085
https://doi.org/10.1093/bioinformatics/btz184
https://doi.org/10.1007/s00894-013-1944-3
https://doi.org/10.1021/acs.jmedchem.9b00983
https://doi.org/10.1021/acs.jmedchem.9b00983
https://doi.org/10.1155/2011/290602
https://doi.org/10.1021/jm400487c
https://doi.org/10.1016/j.addr.2020.10.005
https://doi.org/10.1093/bioinformatics/btr498
https://doi.org/10.1080/01926230701320337
https://doi.org/10.1021/acs.jpcb.5b11162
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1016/j.cell.2006.06.044
https://doi.org/10.1021/acs.jpcb.8b11491
https://doi.org/10.1021/acs.jpcb.8b11491
https://doi.org/10.1063/1.1738640
https://doi.org/10.1063/1.1738640
https://doi.org/10.18632/aging.100459
https://doi.org/10.1021/jm049756p
https://doi.org/10.1016/j.biomaterials.2004.02.012
https://doi.org/10.1242/jcs.023820
https://doi.org/10.1063/1.1472510
https://doi.org/10.1063/1.1472510
https://doi.org/10.1016/j.bmcl.2016.08.010
https://doi.org/10.1016/j.bmcl.2016.08.010
https://doi.org/10.1615/critrevtherdrugcarriersyst.v29.i1.10
https://doi.org/10.1615/critrevtherdrugcarriersyst.v29.i1.10
https://doi.org/10.1126/science.285.5430.1028
https://doi.org/10.1021/acs.jpcb.7b11820
https://doi.org/10.1021/ct300003f
https://doi.org/10.1021/ct300003f
https://doi.org/10.1038/sj.onc.1209489
https://doi.org/10.1038/sj.onc.1209489
https://doi.org/10.1371/journal.pcbi.1002819
https://doi.org/10.1021/jm400293z
https://doi.org/10.1002/pro.43
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Graves, A. P., Brenk, R., and Shoichet, B. K. (2005). Decoys for Docking. J. Med.
Chem. 48, 3714–3728. doi:10.1021/jm0491187

Guerois, R., Nielsen, J. E., and Serrano, L. (2002). Predicting Changes in the
Stability of Proteins and Protein Complexes: A Study of More Than 1000
Mutations. J. Mol. Biol. 320, 369–387. doi:10.1016/s0022-2836(02)00442-4

Hanahan, D., and Weinberg, R. A. (2000). The Hallmarks of Cancer. Cell 100,
57–70. doi:10.1016/s0092-8674(00)81683-9

Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: the Next
Generation. Cell 144, 646–674. doi:10.1016/j.cell.2011.02.013

Hansmann, U. H. E., and Okamoto, Y. (1999). New Monte Carlo Algorithms for
Protein Folding. Curr. Opin. Struct. Biol. 9, 177–183. doi:10.1016/s0959-
440x(99)80025-6

Harvey, E. P., Seo, H.-S., Guerra, R. M., Bird, G. H., Dhe-Paganon, S., and
Walensky, L. D. (2018). Crystal Structures of Anti-apoptotic BFL-1 and its
Complex with a Covalent Stapled Peptide Inhibitor. Structure 26, 153–160.
doi:10.1016/j.str.2017.11.016

Hauser, A. S., and Windshügel, B. (2016). LEADS-PEP: A Benchmark Data Set for
Assessment of Peptide Docking Performance. J. Chem. Inf. Model. 56, 188–200.
doi:10.1021/acs.jcim.5b00234

Hinds, M. G., Lackmann, M., Skea, G. L., Harrison, P. J., Huang, D. C., and Day, C.
L. (2003). The Structure of Bcl-W Reveals a Role for the C-Terminal Residues in
Modulating Biological Activity. EMBO J. 22, 1497–1507. doi:10.1093/emboj/
cdg144

Hinds, M. G., Smits, C., Fredericks-Short, R., Risk, J. M., Bailey, M., Huang, D. C.
S., et al. (2007). Bim, Bad and Bmf: Intrinsically Unstructured Bh3-Only
Proteins that Undergo a Localized Conformational Change upon Binding to
Prosurvival Bcl-2 Targets. Cell Death Differ 14, 128–136. doi:10.1038/sj.cdd.
4401934

Holinger, E. P., Chittenden, T., and Lutz, R. J. (1999). Bak BH3 Peptides
Antagonize Bcl-xL Function and Induce Apoptosis through Cytochrome
C-independent Activation of Caspases. J. Biol. Chem. 274, 13298–13304.
doi:10.1074/jbc.274.19.13298

Horne, W. S., Boersma, M. D., Windsor, M. A., and Gellman, S. H. (2008).
Sequence-Based Design of α/β-Peptide Foldamers that Mimic BH3 Domains.
Angew. Chem. Int. Ed. 47, 2853–2856. doi:10.1002/anie.200705315

Hu, Z., Ma, B., Wolfson, H., and Nussinov, R. (2000). Conservation of Polar
Residues as Hot Spots at Protein Interfaces. Proteins 39, 331–342. doi:10.1002/
(sici)1097-0134(20000601)39:4<331::aid-prot60>3.0.co;2-a

Hu, B., Gilkes, D. M., Farooqi, B., Sebti, S. M., and Chen, J. (2006). MDMX
Overexpression Prevents P53 Activation by the MDM2 Inhibitor Nutlin. J. Biol.
Chem. 281, 33030–33035. doi:10.1074/jbc.c600147200

Huart, A. S., and Hupp, T. R. (2013). Evolution of Conformational Disorder &
Diversity of the P53 Interactome. Biodiscov 8, e8952.

Huber, G. A., and Kim, S. (1996). Weighted-ensemble Brownian Dynamics
Simulations for Protein Association Reactions. Biophysical J. 70, 97–110.
doi:10.1016/s0006-3495(96)79552-8

Hunter, T. (2000). Signaling-2000 and beyond. Cell 100, 113–127. doi:10.1016/
s0092-8674(00)81688-8

Hynes, R. O. (2002). Integrins: bidirectional, allosteric signaling machines. Cell 110,
673–687. doi:10.1016/s0092-8674(02)00971-6

Ichim, G., and Tait, S. W. G. (2016). A Fate Worse Than Death: Apoptosis as an
Oncogenic Process. Nat. Rev. Cancer 16, 539–548. doi:10.1038/nrc.2016.58

Ivanov, S. M., Huber, R. G., Warwicker, J., and Bond, P. J. (2016). Energetics and
Dynamics across the Bcl-2-Regulated Apoptotic Pathway Reveal Distinct
Evolutionary Determinants of Specificity and Affinity. Structure 24,
2024–2033. doi:10.1016/j.str.2016.09.006

Jain, A. N. (2007). Surflex-Dock 2.1: Robust Performance from Ligand Energetic
Modeling, Ring Flexibility, and Knowledge-Based Search. J. Comput. Aided
Mol. Des. 21, 281–306. doi:10.1007/s10822-007-9114-2

Janin, J. l., Henrick, K., Moult, J., Eyck, L. T., Sternberg, M. J. E., Vajda, S., et al.
(2003). CAPRI: A Critical Assessment of PRedicted Interactions. Proteins 52,
2–9. doi:10.1002/prot.10381

Jeschke, B., Meyer, J., Jonczyk, A., Kessler, H., Adamietz, P., Meenen, N. M., et al.
(2002). RGD-peptides for Tissue Engineering of Articular Cartilage.
Biomaterials 23, 3455–3463. doi:10.1016/s0142-9612(02)00052-2

Jiang, L., and Zawacka-Pankau, J. (2020). The p53/MDM2/MDMX-Targeted
Therapies—A Clinical Synopsis. Cell. Death Dis. 11, 237. doi:10.1038/
s41419-020-2445-9

Jones, D. T. (1999). Protein Secondary Structure Prediction Based on Position-
specific Scoring Matrices. 1 Edited by G. Von Heijne. J. Mol. Biol. 292, 195–202.
doi:10.1006/jmbi.1999.3091

Joseph, T. L., Madhumalar, A., Brown, C. J., Lane, D. P., and Verma, C. S. (2010).
Differential Binding of P53 and Nutlin to MDM2 and MDMX: Computational
Studies. Cell Cycle 9, 1167–1181. doi:10.4161/cc.9.6.11067

Kadry, Y. A., and Calderwood, D. A. (2020). Chapter 22: Structural and Signaling
Functions of Integrins. Biochim. Biophys. Acta (Bba) - Biomembranes 1862,
183206. doi:10.1016/j.bbamem.2020.183206

Kapp, T. G., Rechenmacher, F., Neubauer, S., Maltsev, O. V., Cavalcanti-Adam, E.
A., Zarka, R., et al. (2017). A Comprehensive Evaluation of the Activity and
Selectivity Profile of Ligands for RGD-Binding Integrins. Sci. Rep. 7, 39805.
doi:10.1038/srep39805

Kitada, S., Leone, M., Sareth, S., Zhai, D., Reed, J. C., and Pellecchia, M. (2003).
Discovery, Characterization, and Structure−Activity Relationships Studies of
Proapoptotic Polyphenols Targeting B-Cell Lymphocyte/Leukemia-2 Proteins.
J. Med. Chem. 46, 4259–4264. doi:10.1021/jm030190z

Kitchen, D. B., Decornez, H., Furr, J. R., and Bajorath, J. (2004). Docking and
Scoring in Virtual Screening for Drug Discovery: Methods and Applications.
Nat. Rev. Drug Discov. 3, 935–949. doi:10.1038/nrd1549

Klimek, K., and Ginalska, G. (2020). Proteins and Peptides as Important Modifiers
of the Polymer Scaffolds for Tissue Engineering Applications-A Review.
Polymers 12, 844. doi:10.3390/polym12040844

Kortemme, T., Kim, D. E., and Baker, D. (2004). Computational Alanine Scanning
of Protein-Protein Interfaces. Sci. Signaling 2004 (219), pl2. doi:10.1126/stke.
2192004pl2

Kuntz, I. D., Blaney, J. M., Oatley, S. J., Langridge, R., and Ferrin, T. E. (1982). A
Geometric Approach to Macromolecule-Ligand Interactions. J. Mol. Biol. 161,
269–288. doi:10.1016/0022-2836(82)90153-x

Kurcinski, M., Jamroz, M., Blaszczyk, M., Kolinski, A., and Kmiecik, S. (2015).
CABS-dock Web Server for the Flexible Docking of Peptides to Proteins
without Prior Knowledge of the Binding Site. Nucleic Acids Res. 43,
W419–W424. doi:10.1093/nar/gkv456

Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., et al.
(1996). Structure of the MDM2 Oncoprotein Bound to the P53 Tumor
Suppressor Transactivation Domain. Science 274, 948–953. doi:10.1126/
science.274.5289.948

Lama, D., and Sankararamakrishnan, R. (2011). Molecular Dynamics Simulations
of Pro-apoptotic BH3 Peptide Helices in Aqueous Medium: Relationship
between Helix Stability and Their Binding Affinities to the Anti-apoptotic
Protein Bcl-XL. J. Comput. Aided Mol. Des. 25, 413–426. doi:10.1007/s10822-
011-9428-y

Lamiable, A., Thévenet, P., Thévenet, P., Rey, J., Vavrusa, M., Derreumaux, P., et al.
(2016). PEP-FOLD3: Fasterde Novostructure Prediction for Linear Peptides in
Solution and in Complex. Nucleic Acids Res. 44, W449–W454. doi:10.1093/nar/
gkw329

Lang, L., and Perez, A. (2021). Binding Ensembles of P53-MDM2 Peptide
Inhibitors by Combining Bayesian Inference and Atomistic Simulations.
Molecules 26, 198. doi:10.3390/molecules26010198

Langer, R., and Vacanti, J. (1993). Tissue Engineering. Science 260, 920–926. doi:10.
1126/science.8493529

Leach, A. R. (1994). Ligand Docking to Proteins with Discrete Side-Chain
Flexibility. J. Mol. Biol. 235, 345–356. doi:10.1016/s0022-2836(05)80038-5

Lee, E. F., Czabotar, P. E., Smith, B. J., Deshayes, K., Zobel, K., Colman, P. M., et al.
(2007). Crystal Structure of ABT-737 Complexed with Bcl-xL: Implications for
Selectivity of Antagonists of the Bcl-2 Family. Cel Death Differ 14, 1711–1713.
doi:10.1038/sj.cdd.4402178

Lee, H., Heo, L., Lee, M. S., and Seok, C. (2015). GalaxyPepDock: a Protein-Peptide
Docking Tool Based on Interaction Similarity and Energy Optimization.
Nucleic Acids Res. 43, W431–W435. doi:10.1093/nar/gkv495

Lensink, M. F., Méndez, R., and Wodak, S. J. (2007). Docking and Scoring Protein
Complexes: CAPRI 3rd Edition. Proteins 69, 704–718. doi:10.1002/prot.21804

Lensink, M. F., Brysbaert, G., Nadzirin, N., Velankar, S., Chaleil, R. A. G., Gerguri,
T., et al. (2019). Blind Prediction of Homo-And Hetero-Protein Complexes:
The CASP13-CAPRI Experiment. Proteins 87, 1200–1221. doi:10.1002/prot.
25838

Leonard, S. R., Cormier, A. R., Pang, X., Zimmerman, M. I., Zhou, H.-X., and
Paravastu, A. K. (2013). Solid-State NMR Evidence for β-Hairpin Structure

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161717

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1021/jm0491187
https://doi.org/10.1016/s0022-2836(02)00442-4
https://doi.org/10.1016/s0092-8674(00)81683-9
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/s0959-440x(99)80025-6
https://doi.org/10.1016/s0959-440x(99)80025-6
https://doi.org/10.1016/j.str.2017.11.016
https://doi.org/10.1021/acs.jcim.5b00234
https://doi.org/10.1093/emboj/cdg144
https://doi.org/10.1093/emboj/cdg144
https://doi.org/10.1038/sj.cdd.4401934
https://doi.org/10.1038/sj.cdd.4401934
https://doi.org/10.1074/jbc.274.19.13298
https://doi.org/10.1002/anie.200705315
https://doi.org/10.1002/(sici)1097-0134(20000601)39:4<331::aid-prot60>3.0.co;2-a
https://doi.org/10.1002/(sici)1097-0134(20000601)39:4<331::aid-prot60>3.0.co;2-a
https://doi.org/10.1074/jbc.c600147200
https://doi.org/10.1016/s0006-3495(96)79552-8
https://doi.org/10.1016/s0092-8674(00)81688-8
https://doi.org/10.1016/s0092-8674(00)81688-8
https://doi.org/10.1016/s0092-8674(02)00971-6
https://doi.org/10.1038/nrc.2016.58
https://doi.org/10.1016/j.str.2016.09.006
https://doi.org/10.1007/s10822-007-9114-2
https://doi.org/10.1002/prot.10381
https://doi.org/10.1016/s0142-9612(02)00052-2
https://doi.org/10.1038/s41419-020-2445-9
https://doi.org/10.1038/s41419-020-2445-9
https://doi.org/10.1006/jmbi.1999.3091
https://doi.org/10.4161/cc.9.6.11067
https://doi.org/10.1016/j.bbamem.2020.183206
https://doi.org/10.1038/srep39805
https://doi.org/10.1021/jm030190z
https://doi.org/10.1038/nrd1549
https://doi.org/10.3390/polym12040844
https://doi.org/10.1126/stke.2192004pl2
https://doi.org/10.1126/stke.2192004pl2
https://doi.org/10.1016/0022-2836(82)90153-x
https://doi.org/10.1093/nar/gkv456
https://doi.org/10.1126/science.274.5289.948
https://doi.org/10.1126/science.274.5289.948
https://doi.org/10.1007/s10822-011-9428-y
https://doi.org/10.1007/s10822-011-9428-y
https://doi.org/10.1093/nar/gkw329
https://doi.org/10.1093/nar/gkw329
https://doi.org/10.3390/molecules26010198
https://doi.org/10.1126/science.8493529
https://doi.org/10.1126/science.8493529
https://doi.org/10.1016/s0022-2836(05)80038-5
https://doi.org/10.1038/sj.cdd.4402178
https://doi.org/10.1093/nar/gkv495
https://doi.org/10.1002/prot.21804
https://doi.org/10.1002/prot.25838
https://doi.org/10.1002/prot.25838
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


within MAX8 Designer Peptide Nanofibers. Biophysical J. 105, 222–230. doi:10.
1016/j.bpj.2013.05.047

Lessene, G., Czabotar, P. E., Sleebs, B. E., Zobel, K., Lowes, K. N., Adams, J. M., et al.
(2013). Structure-guided Design of a Selective BCL-XL Inhibitor. Nat. Chem.
Biol. 9, 390–397. doi:10.1038/nchembio.1246

Li, J., Fu, A., and Zhang, L. (2019). An Overview of Scoring Functions Used for
Protein-Ligand Interactions in Molecular Docking. Interdiscip. Sci. Comput.
Life Sci. 11, 320–328. doi:10.1007/s12539-019-00327-w

Li, H., Sze, K. H., Lu, G., and Ballester, P. J. (2021). Machine-learning Scoring
Functions for Structure-Based Virtual Screening. Wires Comput. Mol. Sci. 11,
e1478. doi:10.1002/wcms.1478

Lomonosova, E., and Chinnadurai, G. (2008). BH3-only Proteins in Apoptosis and
beyond: an Overview.Oncogene 27 (Suppl. 1), S2–S19. doi:10.1038/onc.2009.39

London, N., Movshovitz-Attias, D., and Schueler-Furman, O. (2010). The
Structural Basis of Peptide-Protein Binding Strategies. Structure 18,
188–199. doi:10.1016/j.str.2009.11.012

London, N., Raveh, B., Cohen, E., Fathi, G., and Schueler-Furman, O. (2011).
Rosetta FlexPepDock Web Server-High Resolution Modeling of Peptide-
Protein Interactions. Nucl. Acids Res. 39, W249–W253. doi:10.1093/nar/gkr431

London, N., Raveh, B., and Schueler-Furman, O. (2013). Druggable Protein-
Protein Interactions - from Hot Spots to Hot Segments. Curr. Opin. Chem.
Biol. 17, 952–959. doi:10.1016/j.cbpa.2013.10.011

Loo, Y., Goktas, M., Tekinay, A. B., Guler, M. O., Hauser, C. A. E., and Mitraki, A.
(2015). Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.
Adv. Healthc. Mater. 4, 2557–2586. doi:10.1002/adhm.201500402

Luck, K., Kim, D.-K., Lambourne, L., Spirohn, K., Begg, B. E., Bian,W., et al. (2020).
A Reference Map of the Human Binary Protein Interactome. Nature 580,
402–408. doi:10.1038/s41586-020-2188-x

May, P., and May, E. (1999). Twenty Years of P53 Research: Structural and
Functional Aspects of the P53 Protein. Oncogene 18, 7621–7636. doi:10.1038/sj.
onc.1203285

Mayer, B. J. (2001). SH3 Domains: Complexity in Moderation. J. Cel Sci. 114,
1253–1263. doi:10.1242/jcs.114.7.1253

McCammon, J. A., Gelin, B. R., and Karplus, M. (1977). Dynamics of Folded
Proteins. Nature 267, 585–590. doi:10.1038/267585a0

Meric-Bernstam, F., Saleh, M. N., Infante, J. R., Goel, S., Falchook, G. S., Shapiro,
G., et al. (2017). Phase I Trial of a Novel Stapled Peptide ALRN-6924 Disrupting
MDMX- and MDM2-Mediated Inhibition of WT P53 in Patients with Solid
Tumors and Lymphomas. Jco 35, 2505. doi:10.1200/jco.2017.35.15_suppl.2505

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E.
(1953). Equation of State Calculations by Fast Computing Machines. J. Chem.
Phys. 21, 1087–1092. doi:10.1063/1.1699114

Milroy, L.-G., Grossmann, T. N., Hennig, S., Brunsveld, L., and Ottmann, C.
(2014). Modulators of Protein-Protein Interactions. Chem. Rev. 114,
4695–4748. doi:10.1021/cr400698c

Moldoveanu, T., Liu, Q., Tocilj, A., Watson, M., Shore, G., and Gehring, K. (2006).
The X-Ray Structure of a Bak Homodimer Reveals an Inhibitory Zinc Binding
Site. Mol. Cel 24, 677–688. doi:10.1016/j.molcel.2006.10.014

Moreau, R. J., Schubert, C. R., Nasr, K. A., Török, M., Miller, J. S., Kennedy, R. J.,
et al. (2009). Context-independent, Temperature-dependent Helical
Propensities for Amino Acid Residues. J. Am. Chem. Soc. 131, 13107–13116.
doi:10.1021/ja904271k

Morrison, K. L., and Weiss, G. A. (2001). Combinatorial Alanine-Scanning. Curr.
Opin. Chem. Biol. 5, 302–307. doi:10.1016/s1367-5931(00)00206-4

Morrone, J. A., Perez, A., Deng, Q., Ha, S. N., Holloway, M. K., Sawyer, T. K., et al.
(2017a). Molecular Simulations Identify Binding Poses and Approximate
Affinities of Stapled α-Helical Peptides to MDM2 and MDMX. J. Chem.
Theor. Comput. 13, 863–869. doi:10.1021/acs.jctc.6b00978

Morrone, J. A., Perez, A., MacCallum, J., and Dill, K. A. (2017b). Computed
Binding of Peptides to Proteins with MELD-Accelerated Molecular Dynamics.
J. Chem. Theor. Comput. 13, 870–876. doi:10.1021/acs.jctc.6b00977

Morrone, J. A., Weber, J. K., Huynh, T., Luo, H., and Cornell, W. D. (2020).
Combining Docking Pose Rank and Structure with Deep Learning Improves
Protein-Ligand Binding Mode Prediction over a Baseline Docking Approach.
J. Chem. Inf. Model. 60, 4170–4179. doi:10.1021/acs.jcim.9b00927

Moult, J., Pedersen, J. T., Judson, R., and Fidelis, K. (1995). A Large-Scale
Experiment to Assess Protein Structure Prediction Methods. Proteins Struct.
Funct. Bioinform. 23, ii–v. doi:10.1002/prot.340230303

Müller, G., Gurrath, M., and Kessler, H. (1994). Pharmacophore Refinement of
gpIIb/IIIa Antagonists Based on Comparative Studies of Antiadhesive Cyclic
and Acyclic RGD Peptides. J. Comp. Aided Mol. Des. 8, 709–730.

Muchmore, S. W., Sattler, M., Liang, H., Meadows, R. P., Harlan, J. E., Yoon, H. S.,
et al. (1996). X-ray and Nmr Structure of Human Bcl-Xl, an Inhibitor of
Programmed Cell Death. Nature 381, 335–341. doi:10.1038/381335a0

Muppidi, A., Doi, K., Edwardraja, S., Drake, E. J., Gulick, A. M., Wang, H.-G., et al.
(2012). Rational Design of Proteolytically Stable, Cell-Permeable Peptide-Based
Selective Mcl-1 Inhibitors. J. Am. Chem. Soc., 134, 14734–14737.doi:10.1021/
ja306864v

Nevola, L., and Giralt, E. (2015). Modulating Protein-Protein Interactions: the
Potential of Peptides. Chem. Commun. 51, 3302–3315. doi:10.1039/c4cc08565e

Noé, F., Schuette, C., Vanden-Eijnden, E., Reich, L., and Weikl, T. R. (2009).
Constructing the Equilibrium Ensemble of Folding Pathways from Short Off-
Equilibrium Simulations. Proc. Natl. Acad. Sci. 106, 19011–6. doi:10.1073/pnas.
0905466106

O’Brien, F. J. (2011). Biomaterials & Scaffolds for Tissue Engineering.Mater. Today
14, 88–95. doi:10.1016/S1369-7021(11)70058-X

Obarska-Kosinska, A., Iacoangeli, A., Lepore, R., and Tramontano, A. (2016).
PepComposer: Computational Design of Peptides Binding to a Given Protein
Surface. Nucleic Acids Res. 44, W522–W528. doi:10.1093/nar/gkw366

Oltersdorf, T., Elmore, S. W., Shoemaker, A. R., Armstrong, R. C., Augeri, D. J.,
Belli, B. A., et al. (2005). An Inhibitor of Bcl-2 Family Proteins Induces
Regression of Solid Tumours. Nature 435, 677–681. doi:10.1038/nature03579

Oltvai, Z. N., Milliman, C. L., and Korsmeyer, S. J. (1993). Bcl-2 Heterodimerizes In
Vivo with a Conserved Homolog, Bax, that Accelerates Programmed Cell
Death. Cell 74, 609–619. doi:10.1016/0092-8674(93)90509-o

Orzáez, M., Gortat, A., Mondragón, L., and Pérez-Payá, E. (2009). Peptides and
Peptide Mimics as Modulators of Apoptotic Pathways. ChemMedChem 4,
146–160. doi:10.1002/cmdc.200800246

Pan, R., Hogdal, L. J., Benito, J. M., Bucci, D., Han, L., Borthakur, G., et al. (2014).
Selective BCL-2 Inhibition by ABT-199 Causes On-Target Cell Death in
Acute Myeloid Leukemia. Cancer Discov. 4, 362–375. doi:10.1158/2159-8290.
cd-13-0609

Pan, A. C., Xu, H., Palpant, T., and Shaw, D. E. (2017). Quantitative
Characterization of the Binding and Unbinding of Millimolar Drug
Fragments with Molecular Dynamics Simulations. J. Chem. Theor. Comput.
13, 3372–3377. doi:10.1021/acs.jctc.7b00172

Patel, R., Santhosh, M., Dash, J. K., Karpoormath, R., Jha, A., Kwak, J., et al. (2019).
Ile-Lys-Val-ala-Val (IKVAV) Peptide for Neuronal Tissue Engineering. Polym.
Adv. Technoladv. Technol. 30, 4–12. doi:10.1002/pat.4442

Patterson, C. M., Balachander, S. B., Grant, I., Pop-Damkov, P., Kelly, B., McCoull,
W., et al. (2021). Design and Optimisation of Dendrimer-Conjugated, Bcl-2/xL
Inhibitor, AZD0466, with Improved Therapeutic Index for Cancer Therapy.
Comm. Biol. 4, 112. doi:10.1038/s42003-020-01631-8

Paul, F., Wehmeyer, C., Abualrous, E. T., Wu, H., Crabtree, M. D., Schöneberg, J.,
et al. (2017). Protein-peptide Association Kinetics beyond the Seconds
Timescale from Atomistic Simulations. Nat. Commun. 8, 1095. doi:10.1038/
s41467-017-01163-6

Pazgier, M., Liu, M., Zou, G., Yuan, W., Li, C., Li, C., et al. (2009). Structural Basis
for High-Affinity Peptide Inhibition of P53 Interactions with MDM2 and
MDMX. Proc. Natl. Acad. Sci. 106, 4665–4670. doi:10.1073/pnas.0900947106

Perez, J., Corcho, F., and Llorens, O. (2002). Molecular Modeling in the Design of
Peptidomimetics and Peptide Surrogates. Cmc 9, 2209–2229. doi:10.2174/
0929867023368683

Pérez, R. A., Won, J.-E., Knowles, J. C., and Kim, H.-W. (2013). Naturally and
Synthetic Smart Composite Biomaterials for Tissue Regeneration. Adv. Drug
Deliv. Rev. 65, 471–496. doi:10.1016/j.addr.2012.03.009

Perez, R. A., Seo, S.-J., Won, J.-E., Lee, E.-J., Jang, J.-H., Knowles, J. C., et al. (2015).
Therapeutically Relevant Aspects in Bone Repair and Regeneration. Mater.
Today 18, 573–589. doi:10.1016/j.mattod.2015.06.011

Perez, J. J., Tomas, M. S., and Rubio-Martinez, J. (2016). Assessment of the
Sampling Performance of Multiple-Copy Dynamics versus a Unique
Trajectory. J. Chem. Inf. Model. 56, 1950–1962. doi:10.1021/acs.jcim.6b00347

Perez, J. J. (2018). Designing Peptidomimetics. Ctmc 18, 566–590. doi:10.2174/
1568026618666180522075258

Petrie, T. A., Raynor, J. E., Reyes, C. D., Burns, K. L., Collard, D. M., and García, A.
J. (2008). The Effect of Integrin-specific Bioactive Coatings on Tissue Healing

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161718

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1016/j.bpj.2013.05.047
https://doi.org/10.1016/j.bpj.2013.05.047
https://doi.org/10.1038/nchembio.1246
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1002/wcms.1478
https://doi.org/10.1038/onc.2009.39
https://doi.org/10.1016/j.str.2009.11.012
https://doi.org/10.1093/nar/gkr431
https://doi.org/10.1016/j.cbpa.2013.10.011
https://doi.org/10.1002/adhm.201500402
https://doi.org/10.1038/s41586-020-2188-x
https://doi.org/10.1038/sj.onc.1203285
https://doi.org/10.1038/sj.onc.1203285
https://doi.org/10.1242/jcs.114.7.1253
https://doi.org/10.1038/267585a0
https://doi.org/10.1200/jco.2017.35.15_suppl.2505
https://doi.org/10.1063/1.1699114
https://doi.org/10.1021/cr400698c
https://doi.org/10.1016/j.molcel.2006.10.014
https://doi.org/10.1021/ja904271k
https://doi.org/10.1016/s1367-5931(00)00206-4
https://doi.org/10.1021/acs.jctc.6b00978
https://doi.org/10.1021/acs.jctc.6b00977
https://doi.org/10.1021/acs.jcim.9b00927
https://doi.org/10.1002/prot.340230303
https://doi.org/10.1038/381335a0
https://doi.org/10.1021/ja306864v
https://doi.org/10.1021/ja306864v
https://doi.org/10.1039/c4cc08565e
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1073/pnas.0905466106
https://doi.org/10.1016/S1369-7021(11)70058-X
https://doi.org/10.1093/nar/gkw366
https://doi.org/10.1038/nature03579
https://doi.org/10.1016/0092-8674(93)90509-o
https://doi.org/10.1002/cmdc.200800246
https://doi.org/10.1158/2159-8290.cd-13-0609
https://doi.org/10.1158/2159-8290.cd-13-0609
https://doi.org/10.1021/acs.jctc.7b00172
https://doi.org/10.1002/pat.4442
https://doi.org/10.1038/s42003-020-01631-8
https://doi.org/10.1038/s41467-017-01163-6
https://doi.org/10.1038/s41467-017-01163-6
https://doi.org/10.1073/pnas.0900947106
https://doi.org/10.2174/0929867023368683
https://doi.org/10.2174/0929867023368683
https://doi.org/10.1016/j.addr.2012.03.009
https://doi.org/10.1016/j.mattod.2015.06.011
https://doi.org/10.1021/acs.jcim.6b00347
https://doi.org/10.2174/1568026618666180522075258
https://doi.org/10.2174/1568026618666180522075258
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and Implant Osseointegration. Biomaterials 29, 2849–2857. doi:10.1016/j.
biomaterials.2008.03.036

Petros, A. M., Nettesheim, D. G., Wang, Y., Olejniczak, E. T., Meadows, R. P.,
Mack, J., et al. (2000). Rationale for Bcl-xL/Bad Peptide Complex Formation
from Structure, Mutagenesis, and Biophysical Studies. Protein Sci., 9,
2528–2534.doi:10.1017/s096183680000331x

Petros, A. M., Medek, A., Nettesheim, D. G., Kim, D. H., Yoon, H. S., Swift, K., et al.
(2001). Solution Structure of the Antiapoptotic Protein Bcl-2. Proc. Natl. Acad.
Sci. 98, 3012–3017. doi:10.1073/pnas.041619798

Petros, A. M., Olejniczak, E. T., and Fesik, S. W. (2004) Structural Biology of the
Bcl-2 Family of Proteins. Biochim. Biophys. Acta (Bba) - Mol. Cel Res., 1644,
83–94. doi:10.1016/j.bbamcr.2003.08.012

Petsalaki, E., and Russell, R. B. (2008). Peptide-mediated Interactions in Biological
Systems: New Discoveries and Applications. Curr. Opin. Biotechnol. 19,
344–350. doi:10.1016/j.copbio.2008.06.004

Phan, J., Li, Z., Kasprzak, A., Li, B., Sebti, S., Guida, W., et al. (2010). Structure-
based Design of High Affinity Peptides Inhibiting the Interaction of P53 with
MDM2 and MDMX. J. Biol. Chem. 285, 2174–2183. doi:10.1074/jbc.m109.
073056

Pierce, B. G., Hourai, Y., and Weng, Z. (2011). Accelerating Protein Docking in
ZDOCK Using an Advanced 3D Convolution Library. Plos One 6, e24657.
doi:10.1371/journal.pone.0024657

Pierschbacher, M. D., and Ruoslahti, E. (1984). Variants of the Cell Recognition
Site of Fibronectin that Retain Attachment-Promoting Activity. Proc. Natl.
Acad. Sci. 81, 5985–5988. doi:10.1073/pnas.81.19.5985

Popowicz, G., Czarna, A., and Holak, T. (2008). Structure of the Human Mdmx
Protein Bound to the P53 Tumor Suppressor Transactivation Domain. Cell
Cycle 7, 2441–2443. doi:10.4161/cc.6365

Porter, K. A., Xia, B., Beglov, D., Bohnuud, T., Alam, N., Schueler-Furman, O., et al.
(2017). ClusPro PeptiDock: Efficient Global Docking of Peptide Recognition
Motifs Using FFT. Bioinformatics 33, 3299–3301. doi:10.1093/bioinformatics/
btx216

Porter, K. A., Desta, I., Kozakov, D., and Vajda, S. (2019). What Method to Use for
Protein-Protein Docking?. Curr. Opin. Struct. Biol. 55, 1–7. doi:10.1016/j.sbi.
2018.12.010

Raveh, B., London, N., Zimmerman, L., and Schueler-Furman, O. (2011). Rosetta
FlexPepDock Ab-Initio: Simultaneous Folding, Docking and Refinement of
Peptides onto Their Receptors. Plos One 6, e18934. doi:10.1371/journal.pone.
0018934

Reddy, C. N., Manzar, N., Ateeq, B., and Sankararamakrishnan, R. (2020).
Computational Design of BH3-Mimetic Peptide Inhibitors that Can Bind
Specifically to Mcl-1 or Bcl-XL: Role of Non-hot Spot Residues.
Biochemistry 59, 4379–4394. doi:10.1021/acs.biochem.0c00661

Reed, D., Shen, Y., Shelat, A. A., Arnold, L. A., Ferreira, A. M., Zhu, F., et al. (2010).
Identification and Characterization of the First Small Molecule Inhibitor of
MDMX*. J. Biol. Chem. 285, 10786–10796. doi:10.1074/jbc.m109.056747

Rentzsch, R., and Renard, B. Y. (2015). Docking Small Peptides Remains a Great
Challenge: an Assessment Using AutoDock Vina. Brief. Bioinform. 16,
1045–1056. doi:10.1093/bib/bbv008

Roy, M. J., Vom, A., Czabotar, P. E., and Lessene, G. (2014). Cell Death and the
Mitochondria: Therapeutic Targeting of the BCL-2 Family-Driven Pathway. Br.
J. Pharmacol. 171, 1973–1987. doi:10.1111/bph.12431

Ruiter, A. de., and Oostenbrink, C. (2020). Advances in the Calculation of Binding
Free Energies. Curr. Opin. Struc. Biol. 61, 207–212.

Ruoslahti, E. (1996). RGD and Other Recognition Sequences for Integrins. Annu.
Rev. Cel Dev. Biol. 12, 697–715. doi:10.1146/annurev.cellbio.12.1.697

Sang, P., Shi, Y., Lu, J., Chen, L., Yang, L., Borcherds, W., et al. (2020). α-Helix-
Mimicking Sulfono-γ-AApeptide Inhibitors for P53-MDM2/MDMX Protein-
Protein Interactions. J. Med. Chem. 63, 975–986. doi:10.1021/acs.jmedchem.
9b00993

Santini, B. L., and Zacharias, M. (2020). Rapid In Silico Design of Potential Cyclic
Peptide Binders Targeting Protein-Protein Interfaces. Front. Chem. 8, 573259.
doi:10.3389/fchem.2020.573259

Santos, K. B., Guedes, I. A., Karl, A. L. M., and Dardenne, L. E. (2020). Highly
Flexible Ligand Docking: Benchmarking of the DockThor Program on the
LEADS-PEP Protein-Peptide Data Set. J. Chem. Inf. Model. 60, 667–683. doi:10.
1021/acs.jcim.9b00905

Sattler, M., Liang, H., Nettesheim, D., Meadows, R. P., Harlan, J. E., Eberstadt, M.,
et al. (1997). Structure of Bcl-Xl-Bak Peptide Complex: Recognition between
Regulators of Apoptosis. Science 275, 983–986. doi:10.1126/science.275.
5302.983

Scarborough, R. M., and Gretler, D. D. (2000). Platelet Glycoprotein IIb-IIIa
Antagonists as Prototypical Integrin Blockers: Novel Parenteral and Potential
Oral Antithrombotic Agents. J. Med. Chem. 43, 3453–3473. doi:10.1021/
jm000022w

Scarborough, R. M., Naughton, M. A., Teng, W., Rose, J. W., Phillips, D. R.,
Nannizzi, L., et al. (1993). Design of Potent and Specific Integrin Antagonists.
Peptide Antagonists with High Specificity for Glycoprotein IIb-IIIa. J. Biol.
Chem. 268, 1066–1073. doi:10.1016/s0021-9258(18)54042-4

Shandler, S. J., Korendovych, I. V., Moore, D. T., Smith-Dupont, K. B., Streu, C. N.,
Litvinov, R. I., et al. (2011). Computational Design of a β-Peptide that Targets
Transmembrane Helices. J. Am. Chem. Soc. 133, 12378–12381. doi:10.1021/
ja204215f

Shoemaker, B. A., Portman, J. J., and Wolynes, P. G. (2000). Speeding Molecular
Recognition by Using the Folding Funnel: The Fly-Casting Mechanism. Proc.
Natl. Acad. Sci. 97, 8868–8873. doi:10.1073/pnas.160259697

Shoemaker, A. R., Oleksijew, A., Bauch, J., Belli, B. A., Borre, T., Bruncko, M., et al.
(2006). A Small-Molecule Inhibitor of Bcl-XL Potentiates the Activity of
Cytotoxic Drugs In Vitro and In Vivo. Cancer Res. 66, 8731–8739. doi:10.
1158/0008-5472.can-06-0367

Simons, K. T., Bonneau, R., Ruczinski, I., and Baker, D. (1999). Ab Initio protein
Structure Prediction of CASP III Targets Using ROSETTA. Proteins 37 (Suppl.
3), 171–176. doi:10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;
2-z

Singh, R., Letai, A., and Sarosiek, K. (2019). Regulation of Apoptosis in Health and
Disease: the Balancing Act of Bcl-2 Family Proteins. Nat. Rev. Mol. Cel Biol. 20,
175–193. doi:10.1038/s41580-018-0089-8

Smadbeck, J., Chan, K. H., Khoury, G. A., Xue, B., Robinson, R. C., Hauser, C. A.,
et al. (2014). De Novo design and Experimental Characterization of Ultrashort
Self-Associating Peptides. Plos Comput. Biol. 10, e1003718. doi:10.1371/journal.
pcbi.1003718

Sondermann, H., Scheufler, C., Schneider, C., Hohfeld, J., Hartl, F. U., andMoarefi,
I. (2001). Structure of a Bag/Hsc70 Complex: Convergent Functional Evolution
of Hsp70 Nucleotide Exchange Factors. Science 291, 1553–1557. doi:10.1126/
science.1057268

Spiliotopoulos, D., Kastritis, P. L., Melquiond, A. S., Bonvin, A. M., Musco, G.,
Rocchia, W., et al. (2016). dMM-PBSA: A New HADDOCK Scoring Function
for Protein-Peptide Docking. Front. Mol. Biosci. 3, 46. doi:10.3389/fmolb.2016.
00046

Stein, R. M., Yang, Y., Balius, T. E., O’Meara, M. J., Lyu, J., Young, J., et al. (2021).
Property-Unmatched Decoys in Docking Benchmarks. J. Chem. Inf. Model. 61,
699–714. doi:10.1021/acs.jcim.0c00598

Stelzl, U., Worm, U., Lalowski, M., Haenig, C., Brembeck, F. H., Goehler, H., et al.
(2005). A Human Protein-Protein Interaction Network: a Resource for
Annotating the Proteome. Cell 122, 957–968. doi:10.1016/j.cell.2005.08.029

Stumpf, M. P. H., Thorne, T., de Silva, E., Stewart, R., An, H. J., Lappe, M., et al.
(2008). Estimating the Size of the Human Interactome. Proc. Natl. Acad. Sci.
105, 6959–6964. doi:10.1073/pnas.0708078105

Sugase, K., Dyson, H. J., and Wright, P. E. (2007). Mechanism of Coupled Folding
and Binding of an Intrinsically Disordered Protein. Nature 447, 1021–1025.
doi:10.1038/nature05858

Sugita, Y., and Okamoto, Y. (1999). Replica-exchange Molecular Dynamics
Method for Protein Folding. Chem. Phys. Lett. 314, 141–151. doi:10.1016/
s0009-2614(99)01123-9

Suzuki, M., Youle, R. J., and Tjandra, N. (2000). Structure of Bax. Cell 103, 645–654.
doi:10.1016/s0092-8674(00)00167-7

Takano, K., Ota, M., Ogasahara, K., Yamagata, Y., Nishikawa, K., and Yutani, K.
(1999). Experimental Verification of the ’stability Profile of Mutant Protein’
(SPMP) Data Using Mutant Human Lysozymes. Protein Eng. 12, 663–672.
doi:10.1093/protein/12.8.663

Tallawi, M., Rosellini, E., Barbani, N., Cascone, M. G., Rai, R., Saint-Pierre, G., et al.
(2015). Strategies for the Chemical and Biological Functionalization of Scaffolds
for Cardiac Tissue Engineering: A Review. J. R. Soc. Interf. 12, 20150254. doi:10.
1098/rsif.2015.0254

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161719

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1016/j.biomaterials.2008.03.036
https://doi.org/10.1016/j.biomaterials.2008.03.036
https://doi.org/10.1017/s096183680000331x
https://doi.org/10.1073/pnas.041619798
https://doi.org/10.1016/j.bbamcr.2003.08.012
https://doi.org/10.1016/j.copbio.2008.06.004
https://doi.org/10.1074/jbc.m109.073056
https://doi.org/10.1074/jbc.m109.073056
https://doi.org/10.1371/journal.pone.0024657
https://doi.org/10.1073/pnas.81.19.5985
https://doi.org/10.4161/cc.6365
https://doi.org/10.1093/bioinformatics/btx216
https://doi.org/10.1093/bioinformatics/btx216
https://doi.org/10.1016/j.sbi.2018.12.010
https://doi.org/10.1016/j.sbi.2018.12.010
https://doi.org/10.1371/journal.pone.0018934
https://doi.org/10.1371/journal.pone.0018934
https://doi.org/10.1021/acs.biochem.0c00661
https://doi.org/10.1074/jbc.m109.056747
https://doi.org/10.1093/bib/bbv008
https://doi.org/10.1111/bph.12431
https://doi.org/10.1146/annurev.cellbio.12.1.697
https://doi.org/10.1021/acs.jmedchem.9b00993
https://doi.org/10.1021/acs.jmedchem.9b00993
https://doi.org/10.3389/fchem.2020.573259
https://doi.org/10.1021/acs.jcim.9b00905
https://doi.org/10.1021/acs.jcim.9b00905
https://doi.org/10.1126/science.275.5302.983
https://doi.org/10.1126/science.275.5302.983
https://doi.org/10.1021/jm000022w
https://doi.org/10.1021/jm000022w
https://doi.org/10.1016/s0021-9258(18)54042-4
https://doi.org/10.1021/ja204215f
https://doi.org/10.1021/ja204215f
https://doi.org/10.1073/pnas.160259697
https://doi.org/10.1158/0008-5472.can-06-0367
https://doi.org/10.1158/0008-5472.can-06-0367
https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;2-z
https://doi.org/10.1002/(sici)1097-0134(1999)37:3+<171::aid-prot21>3.0.co;2-z
https://doi.org/10.1038/s41580-018-0089-8
https://doi.org/10.1371/journal.pcbi.1003718
https://doi.org/10.1371/journal.pcbi.1003718
https://doi.org/10.1126/science.1057268
https://doi.org/10.1126/science.1057268
https://doi.org/10.3389/fmolb.2016.00046
https://doi.org/10.3389/fmolb.2016.00046
https://doi.org/10.1021/acs.jcim.0c00598
https://doi.org/10.1016/j.cell.2005.08.029
https://doi.org/10.1073/pnas.0708078105
https://doi.org/10.1038/nature05858
https://doi.org/10.1016/s0009-2614(99)01123-9
https://doi.org/10.1016/s0009-2614(99)01123-9
https://doi.org/10.1016/s0092-8674(00)00167-7
https://doi.org/10.1093/protein/12.8.663
https://doi.org/10.1098/rsif.2015.0254
https://doi.org/10.1098/rsif.2015.0254
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


Tan, Y. S., Lane, D. P., and Verma, C. S. (2016). Stapled Peptide Design: Principles
and Roles of Computation. Drug Discov. Today 21, 1642–1653. doi:10.1016/j.
drudis.2016.06.012

Tan, Y. S., Mhoumadi, Y., and Verma, C. S. (2019). Roles of Computational
Modelling in Understanding P53 Structure, Biology, and its Therapeutic
Targeting. J. Mol. Cel. Biol. 11, 306–316. doi:10.1093/jmcb/mjz009

Tao, H., Zhang, Y., and Huang, S.-Y. (2020). Improving Protein-Peptide Docking
Results via Pose-Clustering and Rescoring with a Combined Knowledge-Based
and MM-GBSA Scoring Function. J. Chem. Inf. Model. 60, 2377–2387. doi:10.
1021/acs.jcim.0c00058

Tomasella, C., Floris, M., Guccione, S., Pappalardo, M., and Basile, L. (2021).
Peptidomimetics In Silico. Mol. Inform. 40, e2000087. doi:10.1002/minf.
202000087

Torres, M. D. T., Sothiselvam, S., Lu, T. K., and de la Fuente-Nunez, C. (2019).
Peptide Design Principles for Antimicrobial Applications. J. Mol. Biol. 431,
3547–3567. doi:10.1016/j.jmb.2018.12.015

Trellet, M., Melquiond, A. S. J., and Bonvin, A. M. J. J. (2013). A Unified
Conformational Selection and Induced Fit Approach to Protein-Peptide
Docking. Plos One 8, e58769. doi:10.1371/journal.pone.0058769

Tse, C., Shoemaker, A. R., Adickes, J., Anderson, M. G., Chen, J., Jin, S., et al.
(2008). ABT-263: A Potent and Orally Bioavailable Bcl-2 Family Inhibitor.
Cancer Res. 68, 3421–3428. doi:10.1158/0008-5472.can-07-5836

Tzung, S.-P., Kim, K. M., Basañez, G., Giedt, C. D., Simon, J., Zimmerberg, J., et al.
(2001). Antimycin A Mimics a Cell-Death-Inducing Bcl-2 Homology Domain
3. Nat. Cel. Biol. 3, 183–191. doi:10.1038/35055095

Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., et al.
(2004). In Vivo Activation of the P53 Pathway by Small-Molecule Antagonists
of MDM2. Science 303, 844–848. doi:10.1126/science.1092472

Vassilev, L. T. (2005). p53 Activation by Small Molecules: Application in Oncology.
J. Med. Chem. 48, 4491–4499. doi:10.1021/jm058174k

Vila-Julià, G., Granadino-Roldán, J. M., Perez, J. J., and Rubio-Martinez, J. (2020).
Molecular Determinants for the Activation/Inhibition of Bak Protein by BH3
Peptides. J. Chem. Inf. Model. 60, 1632–1643. doi:10.1021/acs.jcim.9b01047

Von Der Mark, K., Park, J., Bauer, S., and Schmuki, P. (2010). Nanoscale
Engineering of Biomimetic Surfaces: Cues from the Extracellular Matrix. Cel
Tissue Res 339, 131–153. doi:10.1007/s00441-009-0896-5

Votapka, L.W., and Amaro, R. E. (2015). Multiscale Estimation of Binding Kinetics
Using Brownian Dynamics, Molecular Dynamics and Milestoning. Plos
Comput. Biol. 11, e1004381. doi:10.1371/journal.pcbi.1004381

Wade, R. J., and Burdick, J. A. (2012). Engineering ECM signals into biomaterials.
Mater. Today 15, 454–459. doi:10.1016/s1369-7021(12)70197-9

Walensky, L. D., Kung, A. L., Escher, I., Malia, T. J., Barbuto, S., Wright, R., et al.
(2004). Activation of Apoptosis In Vivo by a Hydrocarbon-Stapled BH3 Helix.
Science 305, 1466–1470. doi:10.1126/science.1099191

Wallraven, K., Holmelin, F. L., Glas, A., Hennig, S., Frolov, A. I., Grossmann, T. N.,
et al. (2020). Adapting Free Energy Perturbation Simulations for Large
Macrocyclic Ligands: How to Dissect Contributions from Direct Binding
and Free Ligand Flexibility. Chem. Sci. 11, 2269–2276. doi:10.1039/c9sc04705k

Wang, J. L., Zhang, Z. J., Choksi, S., Shan, S., Lu, Z., Croce, C. M., et al. (2000). Cell
Permeable Bcl-2 Binding Peptides: a Chemical Approach to Apoptosis
Induction in Tumor Cells. Cancer Res. 60, 1498–1502.

Wang, G., Nikolovska-Coleska, Z., Yang, C.-Y., Wang, R., Tang, G., Guo, J., et al.
(2006). Structure-Based Design of Potent Small-Molecule Inhibitors of Anti-
apoptotic Bcl-2 Proteins. J. Med. Chem. 49, 6139–6142. doi:10.1021/jm060460o

Wang, L., Sloper, D. T., Addo, S. N., Tian, D., Slaton, J. W., and Xing, C. (2008).
WL-276, an Antagonist against Bcl-2 Proteins, Overcomes Drug Resistance and
Suppresses Prostate Tumor Growth. Cancer Res. 68, 4377–4383. doi:10.1158/
0008-5472.can-07-6590

Wang, L., Wu, Y., Deng, Y., Kim, B., Pierce, L., Krilov, G., et al. (2015). Accurate
and Reliable Prediction of Relative Ligand Binding Potency in Prospective Drug
Discovery by Way of a Modern Free-Energy Calculation Protocol and Force
Field. J. Am. Chem. Soc. 137, 2695–2703. doi:10.1021/ja512751q

Wei, J., Stebbins, J. L., Kitada, S., Dash, R., Placzek, W., Rega, M. F., et al. (2010). BI-
97C1, an Optically Pure Apogossypol Derivative as Pan-Active Inhibitor of
Antiapoptotic B-Cell Lymphoma/leukemia-2 (Bcl-2) Family Proteins. J. Med.
Chem. 53, 4166–4176. doi:10.1021/jm1001265

Wells, J. A., and McClendon, C. L. (2007). Reaching for High-Hanging Fruit in
Drug Discovery at Protein-Protein Interfaces. Nature 450, 1001–1009. doi:10.
1038/nature06526

Wen, Z., He, J., Tao, H., and Huang, S.-Y. (2019). PepBDB: a Comprehensive
Structural Database of Biological Peptide-Protein Interactions. Bioinformatics
35, 175–177. doi:10.1093/bioinformatics/bty579

Weng, G., Gao, J., Wang, Z.,Wang, E., Hu, X., Yao, X., et al. (2020). Comprehensive
Evaluation of Fourteen Docking Programs on Protein-Peptide Complexes.
J. Chem. Theor. Comput. 16, 3959–3969. doi:10.1021/acs.jctc.9b01208

Wu, G., Chai, J., Suber, T. L., Wu, J.-W., Du, C., Wang, X., et al. (2000). Structural
Basis of IAP Recognition by Smac/DIABLO. Nature 408, 1008–1012. doi:10.
1038/35050012

Xu, X., Yan, C., and Zou, X. (2018). MDockPeP: An Ab-Initio Protein-Peptide
Docking Server. J. Comput. Chem. 39, 2409–2413. doi:10.1002/jcc.25555

Yan, C., Wu, F., Jernigan, R. L., Dobbs, D., and Honavar, V. (2008).
Characterization of Protein-Protein Interfaces. Protein J. 27, 59–70. doi:10.
1007/s10930-007-9108-x

Yan, C., Xu, X., and Zou, X. (2016). Fully Blind Docking at the Atomic Level for
Protein-Peptide Complex Structure Prediction. Structure 24, 1842–1853.
doi:10.1016/j.str.2016.07.021

Yang, B., Liu, D., and Huang, Z. (2004). Synthesis and Helical Structure of Lactam
Bridged BH3 Peptides Derived from Pro-apoptotic Bcl-2 Family Proteins.
Bioorg. Med. Chem. Lett. 14, 1403–1406. doi:10.1016/j.bmcl.2003.09.101

Yap, J. L., Chen, L., Lanning, M. E., and Fletcher, S. (2017). Expanding the Cancer
Arsenal with Targeted Therapies: Disarmament of the Antiapoptotic Bcl-2
Proteins by Small Molecules. J. Med. Chem. 60, 821–838. doi:10.1021/acs.
jmedchem.5b01888

Yin, H., Slusky, J. S., Berger, B. W., Walters, R. S., Vilaire, G., Litvinov, R. I., et al.
(2007). Computational Design of Peptides that Target Transmembrane Helices.
Science 315, 1817–1822. doi:10.1126/science.1136782

Zhang, Y., and Sanner, M. F. (2019). AutoDock CrankPep: Combining Folding and
Docking to Predict Protein-Peptide Complexes. Bioinformatics 35, 5121–5127.
doi:10.1093/bioinformatics/btz459

Zhang, B. W., Jasnow, D., and Zuckerman, D. M. (2010). The “Weighted
Ensemble” Path Sampling Method Is Statistically Exact for a Broad Class of
Stochastic Processes and Binning Procedures. J. Chem. Phys. 132, 054107.
doi:10.1063/1.3306345

Zhang, D., Liu, H., and Cui, J. (2018). Binding of Anti-apoptotic Bcl-2 with
Different BH3 Peptides: A Molecular Dynamics Study. Chem. Phys. Lett. 691,
103–109. doi:10.1016/j.cplett.2017.10.030

Zhou, G., Pantelopulos, G. A., Mukherjee, S., and Voelz, V. A. (2017). Bridging
Microscopic and Macroscopic Mechanisms of P53-MDM2 Binding with Kinetic
Network Models. Biophysical J. 113, 785–793. doi:10.1016/j.bpj.2017.07.009

Zhou, P., Jin, B., Li, H., and Huang, S.-Y. (2018). HPEPDOCK: a Web Server for
Blind Peptide-Protein Docking Based on a Hierarchical Algorithm. Nucleic
Acids Res. 46, W443–W450. doi:10.1093/nar/gky357

Zhu, J., Zhu, J., Negri, A., Provasi, D., Filizola, M., Coller, B. S., et al. (2010). Closed
Headpiece of Integrin αIIbβ3 and its Complex with an αIIbβ3-specific
Antagonist that Does Not Induce Opening. Blood 116, 5050–5059. doi:10.
1182/blood-2010-04-281154

Zwier, M. C., Pratt, A. J., Adelman, J. L., Kaus, J. W., Zuckerman, D.M., and Chong,
L. T. (2016). Efficient Atomistic Simulation of Pathways and Calculation of Rate
Constants for a Protein-Peptide Binding Process: Application to the MDM2
Protein and an Intrinsically Disordered P53 Peptide. J. Phys. Chem. Lett. 7,
3440–3445. doi:10.1021/acs.jpclett.6b01502

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Perez, Perez and Perez. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Molecular Biosciences | www.frontiersin.org May 2021 | Volume 8 | Article 68161720

Perez et al. Peptide Computational Modeling for PPIs

https://doi.org/10.1016/j.drudis.2016.06.012
https://doi.org/10.1016/j.drudis.2016.06.012
https://doi.org/10.1093/jmcb/mjz009
https://doi.org/10.1021/acs.jcim.0c00058
https://doi.org/10.1021/acs.jcim.0c00058
https://doi.org/10.1002/minf.202000087
https://doi.org/10.1002/minf.202000087
https://doi.org/10.1016/j.jmb.2018.12.015
https://doi.org/10.1371/journal.pone.0058769
https://doi.org/10.1158/0008-5472.can-07-5836
https://doi.org/10.1038/35055095
https://doi.org/10.1126/science.1092472
https://doi.org/10.1021/jm058174k
https://doi.org/10.1021/acs.jcim.9b01047
https://doi.org/10.1007/s00441-009-0896-5
https://doi.org/10.1371/journal.pcbi.1004381
https://doi.org/10.1016/s1369-7021(12)70197-9
https://doi.org/10.1126/science.1099191
https://doi.org/10.1039/c9sc04705k
https://doi.org/10.1021/jm060460o
https://doi.org/10.1158/0008-5472.can-07-6590
https://doi.org/10.1158/0008-5472.can-07-6590
https://doi.org/10.1021/ja512751q
https://doi.org/10.1021/jm1001265
https://doi.org/10.1038/nature06526
https://doi.org/10.1038/nature06526
https://doi.org/10.1093/bioinformatics/bty579
https://doi.org/10.1021/acs.jctc.9b01208
https://doi.org/10.1038/35050012
https://doi.org/10.1038/35050012
https://doi.org/10.1002/jcc.25555
https://doi.org/10.1007/s10930-007-9108-x
https://doi.org/10.1007/s10930-007-9108-x
https://doi.org/10.1016/j.str.2016.07.021
https://doi.org/10.1016/j.bmcl.2003.09.101
https://doi.org/10.1021/acs.jmedchem.5b01888
https://doi.org/10.1021/acs.jmedchem.5b01888
https://doi.org/10.1126/science.1136782
https://doi.org/10.1093/bioinformatics/btz459
https://doi.org/10.1063/1.3306345
https://doi.org/10.1016/j.cplett.2017.10.030
https://doi.org/10.1016/j.bpj.2017.07.009
https://doi.org/10.1093/nar/gky357
https://doi.org/10.1182/blood-2010-04-281154
https://doi.org/10.1182/blood-2010-04-281154
https://doi.org/10.1021/acs.jpclett.6b01502
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles

	Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering
	Introduction
	Structural Features of Protein-Peptide Interactions
	Computational Methods Used to Study Protein-Peptide Interactions
	Docking-Based Approaches
	Free Energy-Based Approaches
	From Bound Conformations to Sequence Design

	The p53-mdm2/x interaction
	The BH3-Bcl-2 Interaction
	Integrins and Tissue Engineering
	Opportunities for Computational Approaches in Tissue Engineering
	Conclusion
	Author Contributions
	Funding
	References


