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a  b  s  t  r  a  c  t

Interaction  between  the  surface  of  implants  and  biological  tissues  is  a key  aspect  of biomaterials  research.
Apart  from  fulfilling  the  non-toxicity  and  structural  requirements,  synthetic  materials  are  asked  to  direct
cell response,  offering  engineered  cues  that provide  specific  instructions  to  cells.  This work  explores  the
functionalization  of  titanium  with  integrin-binding  peptidomimetics  as  a novel  and  powerful  strategy
to  improve  the  adhesion,  proliferation  and  differentiation  of  osteoblast-like  cells  to  implant  materials.
Such  biomimetic  strategy  aims  at targeting  integrins  �v�3 and  �5�1,  which  are  highly expressed  on
osteoblasts  and  are  essential  for many  fundamental  functions  in  bone  tissue  development.  The  successful
grafting  of the  bioactive  molecules  on titanium  is  proven  by  contact  angle  measurements,  X-ray  photo-
electron  spectroscopy  and  fluorescent  labeling.  Early  attachment  and  spreading  of  cells  are  statistically
enhanced  by  both  peptidomimetics  compared  to unmodified  titanium,  reaching  values  of  cell  adhesion
unctionalization
steointegration

comparable  to those  obtained  with  full-length  extracellular  matrix  proteins.  Moreover,  an  increase  in
alkaline  phosphatase  activity,  and  statistically  higher  cell  proliferation  and  mineralization  are  observed
on surfaces  coated  with  the  peptidomimetics.  This  study  shows  an  unprecedented  biological  activity  for
low-molecular-weight  ligands  on  titanium,  and  gives  striking  evidence  of  the potential  of  these  molecules
to  foster  bone  regeneration  on implant  materials.
. Introduction

Surface modification of metallic materials is a well-established
trategy to convey enhanced bioactivity to metallic implants
hile keeping their excellent bulk properties [1]. In this regard,
ommercially pure titanium (CP Ti) and Ti6Al4V, the materials
f choice for most dental and orthopedic applications [2], have
een subjected to surface treatments to improve their interaction
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with surrounding tissues, and ensure a rapid and long-lasting
osteointegration of the biomaterial. In particular, the long-term
stability of the implant has become a serious issue to address, as
the age of patients receiving surgery is gradually decreasing, while
life expectancy is ever-increasing.

A high number of surface modification methods have been
described to improve the biological performance of Ti-based mate-
rials, including physical treatments, which modify the topography
of the surface [3–5], chemical modifications or a combination of
these approaches. All these techniques aim at creating the proper
physicochemical microenvironment to elicit an optimal interaction

with osteoblast (OB) and osteoprecursor cells, which is a crucial
step to obtain a successful osteointegration of the implant material.
In detail, the rationale for modifying the chemical nature of Ti sur-
faces is to obtain bioactive surfaces capable of establishing stronger
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ig. 1. (a) Chemical structure of the �v�3-selective (1) and �5�1-selective (2) pepti

echanical and biochemical interactions with cells than the native
urface of the implant. These approaches comprise both inorganic,
uch as calcium phosphate coatings [6,7], and organic modifica-
ions. Organic coatings are often based on grafting biomolecules
erived from the extracellular matrix (ECM) [8,9], thus mimicking
he natural environment that supports and mediates cell func-
ions on the metallic surface. Such biomimetic strategy relies on
he fact that cells are capable of interacting with their surround-
ngs through membrane receptors, such as integrins. This family of
eterodimeric transmembrane proteins provides a communication
athway from the environment to the nucleus of the cell (outside-in
ignaling), and vice versa (inside-out signaling), which controls pro-
iferation, migration, differentiation and apoptosis of cells [10,11].
ence, by functionalizing the surface of the material with receptor-
inding cues it is possible to dictate cell fate and direct a favorable
steointegration of the implant.

Several approaches have been explored to mimic  natural ECM,
rom complex full-length proteins [12] to minimal linear cell adhe-
ion motifs [13,14]. Between these strategies, many alternatives
ave been developed with the aim of improving biofunctionality,
ffinity and selectivity of the ligand, while reducing the complex-
ty and immunogenicity typical of natural ECM proteins. Multiple
eptide motifs [15,16], peptide mixtures [17], branched [18,19] or
yclic peptides [20–23], and engineered protein fragments [24,25]
ave been designed to overcome these limitations but debate is still
pen on which is the best strategy [26]. Covalent immobilization of
eptides has been proven reliable in terms of in vitro performance,
romoting adhesion, proliferation and differentiation of OB-like
ells [16,19,27,28]. Moreover, some in vivo studies already demon-
trated the efficacy of this functionalization strategy in terms of
etention of peptide bioactivity and consequent increase in bone-
mplant contact area compared to uncoated Ti [29]. Nevertheless,
t is also demonstrated that the use of small sequences of peptides
ears several limitations such as low specificity and affinity for cel-

ular receptors, and low stability to enzymatic degradation [30]. To
olve these issues, a promising alternative is the use of synthetic
eptidomimetics [31,32]. These artificial ligands show almost no

mmune reaction in the body, high stability in serum and can be
esigned to have high affinity for a specific integrin subtype.
In this regard, the development of �v�3- or �5�1-selective
eptidomimetics for surface coating was recently reported by us
33,34]. These compounds, which showed highly specific affinity
or one integrin subtype (Fig. 1a), were able to promote selective
etic ligands. (b) Schematic representation of the surface functionalization strategy.

cell adhesion of �v�3- or �5�1-expressing fibroblasts on gold [33]
and titanium [34] substrates. Both �v�3 and �5�1 heterodimers
have crucial functions in bone biology: first, the �1 subfamily is the
most highly expressed integrin subfamily by osteoprogenitor and
OB cells [35], and the �v�3 the most abundant integrin expressed
by adherent sarcoma osteogenic (SaOS-2) cells on Ti [36]; secondly,
their activation is involved in many processes required for bone
development onto a solid substrate, such as focal contacts forma-
tion [37–39], force sensing and mechanotransduction [38–41], and
osteogenesis [42,43].

Based on these premises, we propose the immobilization of
integrin-binding peptidomimetics on Ti as a feasible and powerful
strategy to mimic bone ECM, and thus improve OB adhesion and
accelerate osteointegration of implants. The aim of this work was
to investigate this strategy by covalently anchoring compounds 1
and 2 (Fig. 1a) onto Ti surfaces, and characterizing the behavior of
SaOS-2 cells on these bioactive surfaces. Covalent immobilization
of the biomolecules was achieved through a simple silanization
protocol with 3-(aminopropyl)-triethoxysilane (APTES) (Fig. 1b).
The physicochemical properties of the surfaces and the presence of
the ligands were characterized by contact angle and surface energy
calculations, roughness measurements, X-ray photoelectron spec-
troscopy (XPS) and fluorescent labeling methods. Cell response
was evaluated in vitro both at short and long incubation times, in
terms of adhesion (number of cells attached, cell spreading and
cytoskeletal organization), proliferation, and differentiation (alka-
line phosphatase production and mineralization). The biological
performance of the peptidomimetics was compared to surfaces
coated with vitronectin (VN) or fibronectin (FN), since these pro-
teins, abundant in bone ECM, have been proved to be also �v�3-
[44] or �5�1- [45] binding proteins, respectively.

2. Materials and methods

2.1. Preparation of functionalized Ti surfaces

Cylindrical CP Ti bars (diameter: 10 mm)  were obtained from
Technalloy S.A. (Sant Cugat del Vallès, Spain). Ti disks (thick-
ness: 2 mm)  were prepared by turning, smoothed with silicon

carbide grinding papers (Neuertek S.A., Eibar and Beortek S.A.,
Asua-Erandio, Spain) and polished with suspension of alumina par-
ticles (1 �m and 0.05 �m particle size) on cotton clothes. Smooth
mirror-like surfaces were obtained, and ultrasonically rinsed with
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yclohexane, isopropanol, distilled water, ethanol and acetone and
tored dried. Prior to silanization, samples were passivated with
5% (v/v) HNO3 for 1 h and ultrasonically cleaned with distilled
ater, ethanol and acetone. Straight after the oxidizing treatment,

ilanization was performed by immersing samples in 2% (v/v)
PTES (Sigma–Aldrich, St. Louis, MO,  USA) in anhydrous toluene

Sigma–Aldrich) at 70 ◦C for 1 h under nitrogen atmosphere, fol-
owed by 5 min  ultrasonic rinsing with toluene. Next, samples

ere rinsed with toluene, distilled water, ethanol and acetone. The
ilane layer was finally cured at 120 ◦C for 5 min. Coupling of the
rosslinking agent N-succinimidyl-3-maleimidopropionate (SMP)
Alfa Aesar, Karlsruhe, Germany) in N,N-dimethylformamide (DMF)
as done by soaking disks in 7.5 M solution for 1 h at room tem-
erature (RT) and rinsing with DMF, distilled water, ethanol and
cetone afterwards. Both silanization and SMP  coupling were per-
ormed under agitation and were followed by rinsing with distilled
ater, ethanol and acetone. Peptidomimetics 1 and 2 were syn-

hesized as previously described [33,46]. Their immobilization on
i surface was performed by first dissolving the biomolecules in
hosphate buffered saline (PBS) at 100 �M [33] and pH 6.5, and
hen depositing 100 �L of these solutions overnight on samples at
T. VN and FN (both from Sigma–Aldrich) were used as positive
ontrols and were coated to Ti at 50 �g/mL in PBS at pH 9.5. The
oating treatment was followed by rinsing three times with PBS.
ncoated polished Ti disks were selected as negative controls. Sur-

aces were named according to the coating molecule. The process
f surface functionalization is summarized in Fig. 1b.

.2. Characterization of surface physicochemical properties

White light interferometry in vertical scanning interferome-
ry mode (Wyko NT9300 Optical Profiler, Veeco Instruments, New
ork, NY, USA) was used to evaluate roughness of Ti disks after pol-

shing treatment. The average roughness (Ra) of each sample was
easured in three randomly chosen points of the disk. Data were

nalyzed with Wyko Vision 4.10 software (Veeco Instruments).
oreover, the sessile drop method was used to measure static con-

act angle of ultrapure Milli-Q water and diiodomethane (volume
f wetting liquids: 1 �L) (Contact Angle System OCA15 plus, Data-
hysics, Filderstadt, Germany), allowing the calculation of surface
nergy with Young-Laplace and Owen-Wendt equations [47,48].
ontact angle values of 3 drops per sample were obtained using
aplace–Young fitting with SCA 20 software (Dataphysics).

.3. Chemical composition of the surfaces by XPS

XPS was used to analyze chemical composition of Ti surfaces.
he system (SPECS Surface Nano Analysis GmbH, Berlin, Germany)
as equipped with a non-monochromatic Mg anode X50 source,

perating at 150 W and a Phoibos 150 MCD-9 detector. Detector
ass energy was fixed at 25 eV with 0.1 eV steps to record high
esolution spectra at a pressure below 7.5 × 10−9 mbar. Casa XPS
oftware (Version 2.3.16, Casa Software Ltd., Teignmouth, UK) was
sed to do fitting and peak integration of spectra. All binding ener-
ies were analyzed calibrating to the C1s signal located at 284.8 eV.

.4. Fluorescent labeling of surface-bound peptidomimetic
olecules

In order to detect the presence of the bioactive molecules
n the functionalized Ti surfaces, a labeling protocol with

 fluorescent tag was carried out [15]. Each peptidomimetic

as a carboxyl group in its chemical structure (Fig. 1a)
hat is available for coupling with a fluorescently-labeled
mine. To this end, functionalized surfaces were incubated
ith 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)·HCl
Biointerfaces 128 (2015) 191–200 193

(5 mM)  (Sigma–Aldrich) and N-hydroxysulfosuccinimide (sulfo-
NHS) (7.5 mM)  (Thermo Scientific, Waltham, MA,  USA) in PBS at pH
6.5 for 15 min  under gentle shaking. After 3 times washing with PBS
at pH 7.4, samples were immersed in a 0.1 mM solution of Oregon
Green® 488 Cadaverine (Life Technologies, Paisley, UK) in PBS for
2 h under agitation. Finally, Ti disks were rinsed 5 times with Milli-Q
water and examined under a fluorescence microscope (Nikon E600,
Tokyo, Japan). Three images per disk were taken and fluorescence
intensity quantified with Fiji/Image-J package (NIH, Bethesda, MD,
USA) [49].

2.5. Cell culture

SaOS-2 cells were cultured in Mc  Coy’s 5A medium supple-
mented with 10% (v/v) fetal bovine serum (FBS), 50 U/mL penicillin,
50 �g/mL streptomycin and 1% (w/v) l-glutamine. Cells were main-
tained at 37 ◦C, in a humidified atmosphere containing 5% (v/v) CO2
and culture medium was changed twice a week. Upon reaching
confluence, cells were detached by trypsin-EDTA and subcultured
into a new flask. Cells at passages between 25 and 35 were used
to carry out all the experiments. All reagents were purchased from
Sigma–Aldrich, unless otherwise noted.

2.6. Cell adhesion

Adhesion of cells on Ti surfaces was  evaluated after 4 h of incu-
bation in serum-free medium by quantification of attached cells
via enzymatic assay. Prior to seeding, samples were rinsed three
times with PBS and blocked in 1% (w/v) bovine serum albumin
(BSA) for 30 min  at RT to avoid non-specific protein adsorption.
Samples tested for mechanical stability of the coating had been
ultrasonicated for 1 h in Milli-Q water prior to PBS washings and
BSA blocking. Ti disks were moved to 48-well plates wells, cells
were seeded at 5 × 104 cells/mL and incubated at 37 ◦C and 5%
(v/v) CO2 containing atmosphere. 4 h post-seeding non-adherent
cells were washed off by gently rinsing with PBS, and remaining
cells were lysed with 300 �L/disk mammalian protein extrac-
tion reagent (M-PER). Enzymatic activity of lactate dehydrogenase
(LDH) was quantified by colorimetric assay (Cytotoxicity Detec-
tion Kit (LDH), Roche Diagnostics, Mannheim, Germany), using a
multimode microplate reader (Infinite M200 PRO, Tecan Group
Ltd., Männedorf, Switzerland). Cell number was obtained using a
standard curve.

2.7. Cell proliferation

After functionalization, samples were rinsed with PBS and
blocked with 1% (w/v) BSA, following the same protocol described
for cell adhesion assays. SaOS-2 cells were then plated at a concen-
tration of 2 × 104 cells/mL in serum-free medium and incubated for
4 h. Medium was  aspired 4 h post-seeding and FBS-supplemented
medium was added. On days 3, 7 and 14, medium was replaced with
Alamar Blue-containing medium (10% (v/v), Invitrogen life tech-
nologies, Merelbeke, Belgium) for 3 h and fluorescence of the dye
quantified afterward according to manufacturer instructions. This
minimally-toxic redox indicator changes color and fluorescence in
response to chemical reduction of the medium, which results from
continued growth of cells.

2.8. Immunofluorescence analysis of cell morphology

Coated Ti surfaces were rinsed with PBS and blocked with BSA,

and SaOS-2 cells plated on samples as previously explained. Cells
were allowed to attach for 4 h in serum-free medium, and sub-
sequently fixed with paraformaldehyde (PFA, 4% w/v in PBS) for
20 min, permeabilized with 500 �L/disk of 0.05% (w/v) Triton X-100
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n PBS for 20 min  and blocked with 1% BSA (w/v) in PBS for 30 min.
ctin fibers and nuclei were stained by incubating with rhodamine-
onjugated phalloidin (1:300, in Triton 0.05% (w/v) in PBS) for 1 h
nd with 4′,6-diamidino-2-phenylindole (DAPI) (1:1000, in PBS-
lycine 20 mM)  for 2 min  at RT in the dark, respectively. Between all
teps, samples were rinsed three times with PBS-Glycine for 5 min.
i disks were mounted and examined under a fluorescence inverted
icroscope (AF7000, Leica, Germany) and images processed using

iji/Image-J package.

.9. Evaluation of osteogenic differentiation

Differentiation of OB-like cells was assayed by measuring early
arkers of both differentiation and mineralization. To this end,

aOS-2 cells were plated in the same conditions as in the pro-
iferation assays. The early marker ALP was quantified using
-nitrophenyl phosphate as a substrate and measuring the amount
f p-nitrophenol produced (SensoLyte® pNPP Alkaline Phosphatase
ssay Kit, AnaSpec Inc., Fremont, CA, USA) on day 7 and 14.
riefly, at these time points, samples were rinsed with PBS to
emove non-adherent cells and M-PER (300 �L/well) was added.
ell lysates were diluted and enzyme activity measured accord-

ng to manufacturer instructions. ALP activity was normalized
o cell number. Calcified matrix was detected on day 21 using
lizarin Red S (ARS) staining method (Sigma–Aldrich). In this case,

 h after seeding 2 × 104 cells/mL in serum-free medium, culture
edium was replaced with osteogenic medium (OG-medium), sup-

lemented with 10 mM �-glycerophosphate, 50 �g/mL ascorbic
cid, and 100 nM dexamethasone (Sigma–Aldrich). At the end of
he incubation time, samples were washed with PBS and adhered
ells fixed with 4% (v/v) PFA at RT for 20 min. Ti disks were then
ashed twice with Milli-Q water and 500 �L/well of 40 mM ARS

pH 4.2) was added. Plates were incubated with the dye at RT for
0 min  while gently shaking. Prior to quantification, excess dye was
ashed off using copious washings with Milli-Q water. Cetylpyri-
inium chloride (CPC) buffer (10% (w/v) in 10 mM NaH2PO4, pH 7)
as added (300 �L/well) at RT for 30 min  to elute stain. Supernatant
as then collected, diluted 1:2 with CPC buffer and 100 �L aliquots
ere plated to measure absorbance at 570 nm.
.10. Statistical analysis

All experiments were performed in triplicates and repeated
t least in two independent experiments. Statistical comparison

ig. 2. Contact angle values of water on Ti disks (a) and calculated surface energy (SE) (b
urfaces in Fig. 1b). Columns marked with different letters belong to statistically differen
Biointerfaces 128 (2015) 191–200

of values was  based on ANOVA using Tukey’s test for pair-wise
comparison with p < 0.05. Differences were also analyzed by non-
parametric Mann–Whitney test. Values of all graphs are reported as
mean ± standard deviation. The software used for statistical anal-
ysis was Minitab 16.2.2 Statistical Software (www.minitab.com,
Minitab Inc.).

3. Results and discussion

3.1. Functionalization strategy and surface characterization

To ensure the successful covalent attachment of the
biomolecules on Ti surfaces, a straightforward protocol based on
silanization was carried out (Fig. 1b). Ti samples were passivated
with a standard HNO3 treatment, which yields a homogenous
Ti oxide (TiO2) layer on the surface. Such layer spontaneously
forms hydroxyl groups that are necessary for the subsequent
silanization step [50]. Oxidation with HNO3 was  chosen because it
is done under mild conditions and it does not modify the surface
roughness, as observed with more aggressive methods, such as
acidic or alkaline etchings [51–53]. Silanization with APTES was
performed according to well-established protocols, with some
minor modifications [54,55]. Conversion of the terminal amino
groups into maleimide functionalities with SMP  finally allows the
chemoselective binding of the mimetics via the anchoring thiol
groups (Fig. 1a). Immobilization of the peptidomimetics is done
overnight at pH 6.5 in order to optimize the coupling yields of the
Michael-addition [55] and to avoid disulfide bridge formation. It
should be highlighted that the presence of an aminohexanoic acid
spacer unit in the peptidomimetics structure ensures an adequate
accessibility and presentation of the active motifs for interaction
with cell receptors [20,23].

Roughness of the implant surface deeply affects cell behavior
[3], influencing adhesion, proliferation and differentiation of cells.
Rough surfaces (Ra at micro-level) have been proved to stimu-
late a positive response of OB-like cells on Ti and Ti alloys [56].
However, as the aim of this study was to evaluate cell response
to bioactive ligands, samples were polished until achieving homo-
geneous smooth surfaces with Ra values below 20 nm.  Moreover,
such mirror-like surfaces were chosen as reference topography

because the biological effect displayed by surface-bound bioactive
molecules has been proved to be more evident on smoother sub-
strates than on rougher ones [23]. White light interferometry in
vertical scanning mode was used to measure Ra values of samples

) in each step of the functionalization process (APTES, SMP, 1 and 2 correspond to
t groups (p-value < 0.05).

http://www.minitab.com/
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Table  1
Atomic percentage composition and N/Si atomic ratio of Ti surfaces throughout each step of the functionalization process.

Elemental composition (atomic %) N/Si

O 1s Ti 2p C 1s Si 2p N 1s

Ti–HNO3 treated 63.46 ± 1.65 15.89 ± 0.78 20.11 ± 2.54 0.06 ± 0.07 0.49 ± 0.12
APTES  40.05 ± 5.13 7.15 ± 1.44 39.39 ± 7.78 7.34 ± 1.20 6.07 ± 0.56 0.83
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Compound 1 43.03 ± 8.95 5.26 ± 1.20
Compound 2 46.03 ± 4.09 6.05 ± 0.78 

efore and after the polishing process, as well as after HNO3 acti-
ation (Table S1 in the Supporting Information). Data indicate that
oughness of samples, once reduced by the polishing process, is
ot affected by the passivation treatment. Also the following func-
ionalization steps do not affect topography of samples (data not
hown), in agreement with previous studies [57]. These observa-
ions allowed us to exclude the influence of surface topographical
eatures of the on cell behavior.

Hydrophilicity of the substrate is another fundamental param-
ter affecting cell response [58]. Static contact angle of water
nd diiodomethane were measured, and surface energy (SE) was
alculated in each step of the functionalization protocol (Fig. 2).
ilanization did not change the wettability of the samples, and
oupling of the crosslinker resulted only in a slight decrease of
ater contact angle. However, upon binding compound 1 or 2

o the surface, a statistically significant increase in hydrophilic-
ty was observed, probably due to the presence of hydrophilic
olar groups of the peptidomimetics. On the other hand, con-
act angle of diiodomethane does not change significantly through
he entire functionalization process (data not shown). Contact
ngle results, although not suitable to distinguish between pep-
idomimetics, confirmed the binding of compounds 1 and 2 through

 clear decrease in water contact angle. Furthermore, calculated val-
es of SE of peptidomimetics-functionalized surfaces are almost
oincident, indicating that differences in cell response between
ompounds 1 and 2 cannot be related to differences in these phys-
cochemical properties.

Chemical composition of the outer layer of the surface through-
ut the functionalization steps was monitored using XPS analysis
Table 1). Control HNO3-treated Ti disks showed the characteris-
ic peaks of Ti 2p (not shown) and O 1s (Fig. 3b) of TiO2 layer
50]. The C 1s signal is due to the presence of organic contami-
ants from the environment. Upon addition of the aminosilane,

 1s and Si 2p peaks appear, at 401.0 eV (Fig. 3c) and 103.8 eV
not shown) respectively, while both oxygen and titanium peaks’
ntensities decrease (Table 1). Both the appearance of N and Si, and
he reduction of Ti and O peaks have been associated to the for-

ation of the siloxane layer on the metal [54]. The N/Si ratio is
lightly lower than expected, as already observed in the literature
19,55]. Xiao et al. [55] explained this discrepancy with the partial
oss of amine groups after polymerization of silanes. C 1s spectrum
econvolution of Ti samples showed the presence of three peaks
Fig. 3a): a main peak attributed to aliphatic carbons ( CH2 CH2 )
rom atmospheric contaminants at 284.4 eV; a smaller peak at
86.0 eV, associated to carbons bound to amines ( CH2 NH2), alco-
ols ( CH2 OH) or alkoxy or ether groups; and a third peak at
88.2 eV, due to carbonyl groups ( C O). Silanization with APTES

ncreased the contribution of the peak at 286 eV from 18% to 28%
Table S2 in the Supporting Information), owing to the presence of
mine-bound carbons on the aminosiloxane layer. Also the appear-
nce of a new O 1s peak at 533.5 eV, resulting from siloxane groups,
s consistent with a successful silanization (Fig. 3b) [54]. The decon-

olution of N 1s spectrum identifies two peaks characteristic of
rimary amines (Fig. 3c): protonated amino groups at 402.7 eV,
s observed in previous studies [19], and unprotonated amino
roups at 400.7 eV, also in agreement with literature data [16]. All
.76 ± 9.68 4.50 ± 0.58 6.46 ± 0.69 1.44

.87 ± 3.69 4.54 ± 0.72 6.51 ± 0.68 1.43

together, these data proved the efficiency of the silanization pro-
tocol. The binding of both peptidomimetics to Ti was  accompanied
by a decrease in the Ti 2p and Si 2p atomic percentages (Table 1),
indicating the presence of the biomolecules. Deconvolution of the
C 1s spectrum further confirmed the presence of compounds 1 and
2: the highest energy peak at 288 eV increased its contribution,
from 7.5% in the APTES surface to 18% and 20%, in compound 1-
and 2-coated surfaces, respectively (Fig. 3a, Table S2 in the Sup-
porting Information). This increase is consistent with new amide
functionalities ( NH C O), and imide groups (O C N C O) cor-
responding to the crosslinker [55,59]. The attachment of the ligands
was also evidenced by an increase in the high energy peak of O 1s
at 533 eV, which is associated to carbonyl groups (Fig. 3b, Table
S2 in the Supporting Information). However, this peak cannot be
deconvoluted separately from the siloxane signals. Amide groups
were observed in the N 1 s spectra at energies close to 401 eV but
this signal may  overlap with free unprotonated amino groups from
the silane. The positively charged aminopyridine and guanidine
groups of compounds 1 and 2, respectively, were located at 402.0 eV
(Fig. 3c, Table S2 in the Supporting Information) [54].

In addition to XPS analysis, fluorescent labeling of the pep-
tidomimetic compounds was done to corroborate their anchoring
to the surfaces. Briefly, after coupling a fluorescent amine to the
available carboxyl group of compound 1 and 2, images of the Ti
disks were taken and fluorescence intensity quantified. Apart from
isolated spots, probably related to unbound fluorescent marker
leftovers, uncoated Ti disks showed no fluorescence at all. On the
contrary, the intensity in fluorescence was significantly increased
on surfaces coated with either compound 1 or 2 (Fig. S1 in the
Supporting Information).

3.2. Peptidomimetics coating fosters adhesion and spreading of
SaOS-2 cells on Ti

The effect of the integrin-binding peptidomimetics on short-
time cell adhesive events was evaluated by quantifying the number
and projected area of OB-like cells adhering on Ti after 4 h of
incubation. In order to compare the biological performance of pep-
tidomimetics with the effect displayed by coating the surfaces with
natural ECM proteins, the biological assays included two positive
controls, consisting of VN- and FN-coated Ti surfaces. VN and FN
are involved in a complex and rich series of events in bone biology
[44,45,60–62], and their cell-adhesive capacity has been proved
to be primarily mediated by �v�3 and �5�1 integrin receptors,
respectively [35,63,64]. Thus, VN and FN coated surfaces constitute
good substrate models of bone ECM. As shown in Figs. 4a and 5, the
anchoring of peptidomimetics to Ti statistically (p < 0.05) increased
both the number and the area of adherent SaOS-2 cells, compared
to uncoated Ti. Mechanical stability of the peptidomimetics coating
was also tested by ultrasonication for 1 h in Milli-Q water prior
to cell seeding. Interestingly, no significant differences in cell
adhesion were observed after this treatment (surfaces 1s and 2s,

Fig. 4a), thus proving the stability of the functionalization system
toward mechanical and thermal stresses in an aqueous environ-
ment. Furthermore, it is noteworthy that both peptidomimetics,
improved cell adhesion on Ti surfaces to the same level shown by
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Fig. 3. Deconvolution of XPS spectra of C 1s (a), O 1s (b) and N 1s (c

CM-protein coatings (Fig. 4a). Such improvement is solely due
o the presence of the biomolecules, as no enhancement of cell
dhesion efficiency was observed in any previous step of the func-
ionalization process, as demonstrated by us in a recent study (Fig.
4 in [16]). The analysis of the projected area of cells also revealed

 clear effect of the peptidomimetics coating (Fig. 5). Mean cell area
n the surfaces coated with the peptidomimetics was significantly

igher (p < 0.05) than the one reached on uncoated Ti. As evidenced

rom the immunofluorescence study of actin cytoskeleton, almost
ll SaOS-2 cells attached to control Ti showed a completely rounded

ig. 4. (a) Number of SaOS-2 cells adhered on Ti surfaces after 4 h of incubation in serum-
he  samples were subjected to ultrasonication in water for 1 h prior to cell seeding. (b) Proli
f  cell numbers was  done with Alamar Blue assay. APTES, SMP, 1 and 2 correspond to surfa
roups (p-value < 0.05).
he Ti surface throughout the steps of the functionalization process.

shape. On the contrary, high cell spreading and a fully developed
cytoskeleton were visible on both peptidomimetic-functionalized
surfaces (Fig. 5). Although adhesion and focal contact formation
of OBs on several substrates has been described to be mainly
�5�1-mediated [25,65,66], we found that both �v�3- and �5�1-
selective surfaces promoted the same extent of attachment and
spreading of SaOS-2 cells. In fact, a previous study analyzing

integrin expression of SaOS-2 cells on Ti reported high expression
of �5 and �1 subunits, and of �v�3, which was the integrin with
the highest level of expression [36]. Therefore, it should not come

free medium. Cells were quantified via LDH enzymatic assay. The letter “s” denotes
feration of SaOS-2 cells on Ti surfaces after 3, 7 and 14 days of culture. Quantification
ces in Fig. 1b. Columns marked with different letters belong to statistically different
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ig. 5. Spreading of SaOS-2 cells adhered on Ti surfaces after 4 h of incubation in s
00  �m.  (b) Quantification of cell area is obtained by calculating the mean projected
o  surfaces in Fig. 1b. Columns marked with different letters belong to statistically d

s a surprise that both peptidomimetics have the potential to
upport the adhesion and spreading of OB-like cells, through the
ctivation of these two surface receptors, which are known to
lay a key role in different phases of focal adhesions maturation
37]. Although these integrin subtypes play distinct roles in cell
dhesive processes [37–39,41,67], both �5�1 and �v�3 have been
escribed to support attachment, spreading and focal contacts for-
ation on a solid substrate [37]. However, determining the exact

ole of each integrin subtype requires a deeper study of the signals
ctivated by receptors, and it is beyond the aim of this study.

.3. Proliferation of SaOS-2 cells is supported on the coated Ti
urfaces

Proliferation of SaOS-2 cells on functionalized substrates was
uantified at three time points by Alamar Blue viability assay
Fig. 4b). Proliferation rate was increased by both peptidomimet-
cs, compared to the uncoated Ti. This behavior was statistically
ignificant (p < 0.05) at all time points for both compound 1 and
ompound 2. Coating of Ti with the ECM proteins yielded the high-
st proliferation rates. The general trend of cell growth, which is
aintained throughout the 14 days of incubation, was  uncoated

i < compound 1 < compound 2 < VN < FN. Taking into account that
oth FN- and compound 2-coated surfaces may  preferentially inter-
ct with SaOS-2 cells through the �5�1 integrin, our data suggests
hat this receptor may  have an important role in promoting pro-
iferation of OB-like cells on Ti. In this regard, a previous report
ighlighted the role of �5�1 in regulating the expression of acti-
ator protein-1 (AP-1) transcription factors, c-fos and c-jun,  which
re crucial in OB proliferation [68]. In this study, it was  shown that
y blocking �5�1 integrin before plating cells on FN, c-fos mRNA
xpression was decreased to control levels [69]. The same integrin
eceptor was also shown to play an important, though not criti-
al, role in mesenchymal stem cells proliferation [70]. However, in
his case blocking of �5�1 did not prevent stem cells from grow-
ng on FN, as additional signals provided by the full-length protein
ere sufficient to support cell proliferation. Thus, the authors con-
luded that highly selective ligands are required to study specific
iological effects of the receptor. Our data demonstrate that pro-

iferation levels attained on the surfaces functionalized with the
free medium. (a) Immunofluorescent staining of F-actin of SaOS-2 cells. Scale bar:
rea in a (5 mm × 5 mm)  central section of each disk. APTES, SMP, 1 and 2 correspond
nt groups (p-value < 0.05).

�5�1-selective ligand 2 are not far from the rates reached using a
full-length protein, thereby indicating that binding �5�1 might be
sufficient to induce cell growth on the material. The role of the �v�3
receptor in this process is not clear: Martino et al. [70] reported
increased proliferation of stem cells after blocking this integrin,
while other works showed enhanced proliferation rates of OB-like
cells on surfaces coated with �v�3-binding cyclic RGD peptides
[71,72]. In this work, �v�3-selective surfaces efficiently supported
SaOS-2 proliferation at all time points, though to a lower extent
than �5�1-selective surfaces.

3.4. POsteogenic differentiation and mineralization are
stimulated by integrin-binding peptidomimetics

ALP activity and the production of calcium were studied as early
markers of osteogenic differentiation and mineralization of OB-
like cells, respectively. SaOS-2 cells have been shown to express
ALP when cultured on Ti and its alloys [36,73–75], presenting a
peak of expression between the first and the third week of cul-
ture, depending on the substratum. Thus, the expression of this
marker was quantified after incubating SaOS-2 cells for 7 and 14
days on Ti surfaces, and normalized to cell number (Fig. 6a). On
day 7, a trend toward higher ALP production was observed for
both peptidomimetics in comparison to uncoated Ti, although this
increase was not statistically significant. Both ligands supported the
same levels of ALP production as full-length VN. At this time point,
the lowest expression of the enzyme was found on FN-coated Ti
(p < 0.05). Taking into account the trends in cell growth previously
observed (Fig. 4b), on day 7 FN seems to encourage cell prolifera-
tion, rather than expression of this osteoblastic marker.

The positive tendency observed in ALP production by the pep-
tidomimetics was maintained after 14 days of incubation, reaching
a statistically higher expression of ALP for surfaces coated with
compound 2 compared to uncoated Ti. Moreover, no differences in
ALP activity were detected between the use of the peptidomimetics
or native ECM proteins. Overall, the peptidomimetics were able to

support the same (peptidomimetic 1) or higher (peptidomimetic 2,
p < 0.05) level of ALP expression compared to uncoated Ti.

Alizarin Red S staining method allows for the detection of the
calcium content of the ECM, which is directly correlated to the
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ig. 6. (a) Alkaline phosphatase activity (ALP) quantified after 7 and 14 days of in
ultured  for 21 days on Ti surfaces. Columns marked with different letters belong t

egree of mineralization of the matrix. This late marker of dif-
erentiation has been already used when culturing cells on Ti
o demonstrate the enhancement of matrix calcification by sev-
ral modification treatments [76]. In our study, functionalized
nd protein-coated samples showed a diffuse mineralization pat-
ern, which is characteristic for osteosarcoma cell lines [77], while
ontrol Ti surfaces only supported a very poor mineralization
Fig. 6b and Fig. S2 in the Supporting Information). In order to
uantify the production of calcium, the dye was eluted and its
bsorbance measured (Fig. 6b), corroborating the results of the
icroscope observation (Fig. S2 in the Supporting Information).

oth peptidomimetics induced mineralization of SaOS-2 cells’ ECM,
ignificantly higher (p < 0.05) than the uncoated Ti surface. The fact
hat both VN- and compound 1-functionalized Ti surfaces support
alcification of the matrix is particularly relevant, as it suggests an
mportant role of integrin �v�3 in the osteogenic differentiation of
re-osteoblasts. These results are not in agreement with previous
tudies, which describe that integrin �5�1 induces differentiation
f OBs (e.g. mineralization), while �v�3 suppresses it [25,66,78].
onetheless, the �v�3 receptor, which is usually associated to the
one resorptive activity of osteoclasts, has also been proved to
ave a fundamental role in matrix mineralization: previous works
howed that its perturbation led to a decrease in osteoblast matrix
ineralization of 65%, while perturbation of integrin �5 or �1 only

aused a decrease of 20% and 45%, respectively [79]. The fact that
he pattern of integrin expression strongly depends on cell type,
ncubation time, and the nature and physicochemical properties of
he substrate, may  justify these discrepancies. The use of undiffer-
ntiated cell types (i.e. mesenchymal stem cells), integrin-blocking
ntibodies and a broader biological study would give deeper infor-
ation on the specific roles of these integrins in bone biology;

hese approaches are currently on-going in our laboratory. Finally,
t should be pointed out that no clear inverse relationship between
roliferation and differentiation was observed. This was expected
s SaOS-2 cells undergo a deregulation of cell growth and gene
xpression, which may  lead to high proliferation rates and differ-
ntiation into the osteoblastic lineage at the same time [80].

On the whole, our studies have shown that coating Ti sur-
aces with �v�3- or �5�1-binding peptidomimetics increases the
ttachment, spreading, cytoskeletal formation, proliferation, ALP

ctivity, and matrix mineralization of SaOS-2 cells on the surfaces.
rom our studies, it can be concluded that both peptidomimetic
igands equally stimulate OB-like cell adhesion, growth and dif-
erentiation on metallic substrates. Furthermore, it is of great
ion by pNPP conversion. (b) Quantification of calcium production of SaOS-2 cells,
stically different groups (p-value < 0.05).

relevance that the biological performance of peptidomimetic
molecules is comparable to the response elicited by complex full-
length proteins of bone ECM. To the best of our knowledge, this
is the first report describing such unprecedented activity for syn-
thetic low-molecular-weight organic molecules on Ti substrates.
Our study suggests that a successful mimicry of ECM functions can
be attained by addressing cell receptors, such as integrins, with
small and selective ligands, instead of complex full-length proteins.
These results, together with the high stability to enzymatic degra-
dation displayed by peptidomimetics, confirm the potential of this
strategy to increase the osteointegration of metal implants in vivo.

4. Conclusions

In this work, we have reported a straight-forward strategy
of functionalization to provide implant materials with osteoin-
ductive properties. In particular, CP Ti disks were grafted with
two highly active integrin-binding peptidomimetics. The success-
ful immobilization of the biomolecules was proven by XPS and
fluorescent studies, and the coatings were shown to be mechan-
ically stable. Noteworthy, these ligands significantly improved the
adhesion, proliferation and differentiation of OB-like cells on Ti
surfaces almost to the same extent as observed for native ECM
proteins. There were no significant differences between the two
peptidomimetics. On the whole, the positive biological outcome
observed on the biofunctionalized-samples indicates that single
receptor-binding cues would be able to support the process of
osteointegration of metals and opens promising prospects for
diverse clinical applications in dentistry and orthopedics. Further-
more, the outstanding biological responses attained by such small
and specific synthetic molecules, similar to those supported by
complex and unspecific full-length proteins, is of great relevance:
this simplified integrin-selective model allows to direct integrin-
selective biological responses, paving the way for a much more
specific response-oriented design of biomaterials.
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