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Abstract

Background: With increasing computer power, simulating the dynamics of complex systems in chemistry and
biology is becoming increasingly routine. The modelling of individual reactions in (bio)chemical systems involves a
large number of random events that can be simulated by the stochastic simulation algorithm (SSA). The key
quantity is the step size, or waiting time, τ, whose value inversely depends on the size of the propensities of the
different channel reactions and which needs to be re-evaluated after every firing event. Such a discrete event
simulation may be extremely expensive, in particular for stiff systems where τ can be very short due to the fast
kinetics of some of the channel reactions. Several alternative methods have been put forward to increase the
integration step size. The so-called τ-leap approach takes a larger step size by allowing all the reactions to fire,
from a Poisson or Binomial distribution, within that step. Although the expected value for the different species in
the reactive system is maintained with respect to more precise methods, the variance at steady state can suffer
from large errors as τ grows.

Results: In this paper we extend Poisson τ-leap methods to a general class of Runge-Kutta (RK) τ-leap methods.
We show that with the proper selection of the coefficients, the variance of the extended τ-leap can be well-
behaved, leading to significantly larger step sizes.

Conclusions: The benefit of adapting the extended method to the use of RK frameworks is clear in terms of
speed of calculation, as the number of evaluations of the Poisson distribution is still one set per time step, as in
the original τ-leap method. The approach paves the way to explore new multiscale methods to simulate (bio)
chemical systems.

Background
It is by now very well known that the biochemical
kinetics involving small numbers of molecules can be
very different to kinetics described by the law of mass
action and differential equations [1-3]. This effect is a
property of the intrinsic noise of the system and is asso-
ciated with the uncertainty of knowing when a reaction
occurs and what that reaction is. At the molecular level
such intrinsic uncertainty is, in turn, a consequence of
the stochastic nature of the fluctuations of the potential
energy surface for any chemical reaction in the con-
densed phase [4]. When considering a collection of

molecules, the intrinsic noise is accentuated when some
chemical species have small numbers, as is often the
case in genetic regulatory models where there are small
numbers of key transcription factors that can bind to a
limited number of operator regions on DNA [5-15].
Kurtz [16] and Gillespie [17] realised this fact and devel-
oped discrete methods to deal with this situation. The
stochastic simulation algorithm (SSA, see [18] for a
review) describes the time evolution of the dynamics of
the species in a well-stirred chemically reacting system
as a discrete nonlinear Markov process, resulting in an
exact method to sample from the probability density
function described by the chemical master equation
(CME). Gibson and Bruck proposed a more efficient
implementation of the SSA called the next reaction
method [19].
The basic idea of the SSA is that at each time point a

waiting time to the next reaction and the most likely
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reaction to occur must be sampled from a joint prob-
ability density function leading to an appropriate update
of the state vector. But if the rate constants and/or the
numbers of molecules in the system are large then the
waiting time (time step, τ) can be very small [18].
Because of this Gillespie [20] introduced the Poisson τ-
leap method, in which all reactions are allowed to fire in
a given τ with a frequency extracted from a Poisson dis-
tribution. Since then many extensions of this idea have
been developed. Cao et al. [21] have considered efficient
mechanisms for selecting τ and have developed implicit
methods suitable for simulating stiff systems. Tian and
Burrage [22] introduced a modification of Poisson τ-leap
methods known as Binomial τ-leap methods that avoids
the issue of obtaining negative molecular numbers from
which Poisson τ-leap methods can suffer. Chatterjee et
al. [23] and Auger et al. [24] have considered modifica-
tions to Binomial τ-leap methods that improve some of
the implementation aspects. On the other hand, Monk
[25] and Mackey [26] noted the importance of repre-
senting delays, especially when representing processes
such as transcription and translation. Accordingly, Brat-
sun et al. [12] and Barrio et al. [27] developed a delayed
version of the Stochastic Simulation Algorithm. Leier et
al. [28] and Anderson [29] extended these ideas to a τ-
leap setting.
Although τ-leap methods can, in some cases, substan-

tially improve computational efficiency compared with
the SSA, when there is moderate stiffness in the system
the efficiencies can be quite poor. One could resort to
implicit τ-leap methods but then there are considerable
implementation issues and subtleties. A different
approach is to explore ideas from the numerical ODE
(ordinary differential equations) and numerical SDE
(stochastic differential equations) communities. Thus,
with ODEs it is well known that stiffness leads to a step
size restriction when using explicit methods and many
classes of efficient implicit methods have been designed
[30]. However, in the case of moderately stiff systems
explicit Runge-Kutta methods with extended stability
regions along the negative real axis have proven to be
especially effective [31,32]. Runge-Kutta methods are a
class of one step methods which gain their efficacy by
computing intermediate approximations to the solution
within a step. Explicit Runge-Kutta methods with
extended stability regions are based on explicit Runge-
Kutta methods whose stability function is a shifted and
scaled Chebyshev polynomial or some variant thereof.
In the stochastic setting, there are some subtleties
designing fully implicit methods due to possible
unboundedness of the solution as the Wiener increment
can take positive or negative values with equal likelihood
[33]. Thus most methods are semi-implicit, that is
implicit in the deterministic component. Abdulle and

Cirilli [32] have, with some success, extended the ideas
of explicit Chebyshev methods with extended stability
regions to the SDE setting via their class of S-ROCK
methods.
Here, we use the Runge-Kutta formulation to con-

struct methods with large stability regions so that effi-
ciencies are gained by allowing larger stepsizes. We note
that this is exactly what Abdulle and Cirilli [32] do in
the SDE setting, that is they use a Runge-Kutta formula-
tion to construct methods with excellent stability prop-
erties and even though these methods are only weak
order 1 they perform very well. It is noteworthy that in
this work we are not using the Runge-Kutta formulation
to get second order accuracy for τ-leap methods. This
seems to be a difficult problem, just as it is the case for
SDEs and will probably require double integrals of com-
pensated processes to be simulated. In fact, Abdulle and
Cirilli [32] also note that it is very difficult to construct
weak order 2 methods with good stability properties and
to our knowledge at the moment no such methods exist
in the SDE setting. Note that in a stochastic setting we
judge order of accuracy through two mechanisms:
strong order (where trajectories are compared with the
true solutions) and weak order (where moments are
compared). Often a numerical method may have a
higher weak order than its strong order. The Euler-Mar-
uyama method is a case in point with weak order one
and strong order a half.
Thus, in this paper, we explore a series of fully explicit

multistage Runge-Kutta methods with extended stability
for a fixed τ-leap stochastic simulation schema. Our
methods involve the same number of Poisson evalua-
tions per integration step as in the original τ-leap for-
mulation but allow increasingly larger step sizes at the
cost of an increasing series of deterministic evaluations
in the internal stages. First we give some background on
Runge-Kutta methods for ODEs and SDEs. In section
Results we extend these ideas to the τ-leap methods and
present a stability analysis for linear chemical kinetics,
including its practical implementation. In section
Numerical results we present numerical results for both
the linear case and the classical stiff system described by
the Schlögl reaction [34]. Finally, in section Discussion
we discuss further implications of this work and, in par-
ticular, possible extensions to multiscale modelling.

Review of Runge-Kutta methods for SDEs and ODEs
Stability region for RK methods applied to ODEs
Consider the system of initial value ODEs given by

′ = =y f y y y( ) ( , ), ( ) .t t t 0 0 (1)

The class of s-stage Runge-Kutta (RK) methods for
approximating the solution to (1) is given by
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where h is the time step. This class of methods is
characterised by the Butcher tableau

w A

b T

where bT = (b1,...,bs), w = Ae and e = (1,...,1)T. Here A
is the matrix with entries aij and w is the column vector
wT = (w1,...,ws)

T. A Runge-Kutta method is said to be
explicit if the s × s matrix A is strictly lower triangular.
The method parameters are usually chosen so that a
Runge-Kutta method has appropriate efficiency, order
and stability characteristics. The Yi are considered to be
approximations to the solution at the intermediate
points tn + wih for i = 1,...s.
In a stability setting an RK method is often applied to

the linear, scalar test equation

′ = ≤[ ]y y , .Re 0 (3)

In which case it is easily seen that (2) gives rise to

y R h yn n+ =1 ( ) ,

Where

R z z z( ) = + −( )−
1

1b I A eT  . (4)

.
Here R(z) is the so-called stability function. This func-

tion can be extended to a linear N-dimensional equation
y’ = Λy in which case it becomes a matrix function of
the N × N matrix Λ:

R h h

h
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(5)

where e is the unit vector, Is is the identity matrix of
order s and ⊗ represents the Kronecker tensor product
such that the (i, j) element of A ⊗ B is aijB. Notice
that, if Λ is a scalar value and taking z = hΛ, R(z) would
be a scalar and take the form (4). Therefore we can
refer to R seamlessly irrespective of whether the argu-
ment is a matrix or a scalar.
In the case of an explicit method, as A is a strictly

lower triangular s × s matrix, its sth power is As = 0.

Therefore, equation (4) can be expanded into a finite
power series for A:
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where rj = bTAj-1e, j = 1,...,s. Hence, R(z) is a polyno-
mial of at most degree s for any explicit method.
Since (3) is asymptotically stable for all Re [l] < 0, the

stability region of a Runge-Kutta method is defined as

S z h R z= = ∈ ≤{ }»  :| ( ) | .1 (7)

Stability region for RK methods applied to SDEs
In the case of stochastic differential equations (SDEs),
we consider the general m dimensional form

d ( )  = ( , )d + ( , )d ( ),

( )  = 0 0

y f y g y W

y y

t t t t t
t ,

(8)

where W(t) = (W1(t),...,Wd(t))
T is a vector of d inde-

pendent Wiener processes in which an individual
Wiener process has the properties

 W t t

W t W s t s t s

( ) , ,

( ) ( ) ,

[ ] = ∀

− = − >[ ]
0

Var

and non-overlapping Wiener increments are indepen-
dent of one another. A sample of a Wiener increment
W(t + h) - W(t) is simulated from a Normal random
variable with mean 0 and variance h, N(0, h).
Equation (8) can arise as the limit of a discrete process

through the concept of a diffusion process in which case f
(t, y) will represent the mean of this process and g(t, y) is
the m × d matrix such that ggT is the covariance. Equation
(8) can be interpreted in several ways (see [35] for an
introduction to SDEs), depending on which integral defini-
tion is used. Two such interpretations lead to Itô and Stra-
tonovich forms of SDEs. In the Itô setting an integral is
approximated by summing, over a partition, the areas of a
rectangle with width the increment of the Wiener process
on that subinterval and height the value of the integrand
at the lefthand point of each subinterval whereas in the
Stratonovich setting the integrand is evaluated at the mid-
point of each interval. If (8) is interpreted in the Itô sense
then the simplest numerical algorithm is given by

y y f y W g yn n n n n n nh t t+ = + +1 ( , ) ( , ),Δ (9)

where ΔWn = (ΔW1,....ΔWd)
T and ΔWi := Wi(tn + h) -

Wi(tn ), i = 1,...,d are normally distributed random
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numbers with mean 0 and variance h. This method is
known as the Euler-Maruyama method and it is known

to have strong order (pathwise order)
1
2

and weak

order (moment order) 1.
As with the deterministic case, the quality of a numer-

ical method can be partly characterised by its stability
region associated with the scalar, linear test equation

d d dy ay t by W y y= + =, ( ) .0 0 (10)

The solutions of (10) in the Itô and Stratonovich cases
are, respectively,
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In the later case, the solution is mean square stable
lim | ( ) |t Sy t→∞ ⎡

⎣
⎤
⎦ =( ) 2 0 if Re [a] + Re [b2] ≤ 0.

A very general class of stochastic Runge-Kutta meth-
ods [36] was constructed for the solution of (8) which,
when applied to the scalar test SDE (10) produces

 | | ( , ) | | ,y R p q yn n+⎡
⎣

⎤
⎦ = ⎡

⎣
⎤
⎦1

2 2 

where R is a multinomial in p and q if the method is
explicit and where p = ha, q hb= . Analogous to the
deterministic case, the mean square stability region of a
method is defined as

S p q R p q= ∈ ≤{ }, : ( , ) . 1

In the case of the Euler-Maruyama method

R p q p q( , ) | | | |= + +1 2 2

and in the (p, q) plane, with p, q Î R, the stability
region is a circle of radius 1 centered in (-1,0).

Results
The τ-leap Runge-Kutta framework with bounded
variance and extended stability domain
As stated in the Background section, the SSA describes
the time evolution of a vector of integer numbers of
molecules in the presence of intrinsic noise. More for-
mally, suppose that there are N chemical species S1,...,SN
undergoing m chemical reactions. Let Xi(t), i = 1,...,N
denote the number of molecules of species Si and X(t) =
(X1(t),...,XN(t))

T. Now any set of chemical reactions is
uniquely characterised by two sets of quantities. These
are the update (stoichiometric) vectors ν1,...,νm for each

of the m reactions and the propensity functions a1(X
(t)),...,am(X(t)), which are proportional to the probabil-
ities of each of the reactions occurring. For example,
given the reaction

A B Cc+ ⎯ →⎯

then X(t) = (A(t), B(t), C(t))T, ν1 = (-1, -1, 1)T and a1
(X(t)) = cA(t)B(t).
Given X(t) at time t, the SSA determines a waiting

time τ to the next reaction assuming an exponential
waiting time distribution e a t− 0( ( ))X , where
a t a tjj

m
0 1
( ( )) ( ( ))X X= =∑ , and then selects the most

likely reaction, say k, based on the relative sizes of a1(X
(t)),...,am(X(t)). The state vector is then updated as

X X( ) ( ) ,t t k+ = +   

and the algorithm repeats.
Since a typical stepsize (waiting time) is of the size 1/a0

(X(t)), this can be very small if some of the rate constants
are large and/or some species have large numbers of
molecules. Accordingly τ-leap methods attempt to take a
larger step size in which all the reactions can occur based
on a certain frequency. This can be written as

X Xn n

j

m

j jK+
=

= + ∑1

1

  . (11)

Gillespie [20] chose the number of Rj reactions per
step, Kj , as coming from a Poisson distribution with
mean τaj(Xn), that is

K aj j n~ ( ( )).  X (12)

Using the so-called compensated process given by

L x x x( , ) ( ) ,  = − (13)

which satisfies  [L (τ, x)2] = τx, equation (11) can be
restated as

X X f X Xn n n j

j

m

j nL a+
=

= + + ∑1

1

  ( ) ( , ( )), (14)

Where f x x( ) ( )= =∑  j jj

m
a

1
.

As noted by Gillespie [20] and Tian and Burrage [22],
and as a consequence of the Law of Large Numbers, as
xτ ® ∞, L(τ, x) converges to a normal random variable
with zero mean and variance τx, N(0, τx), and this can
be considered as a sample x WnΔ of xN( )0, . Sub-
stituting this into (14) gives
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This is precisely the Euler-Maruyama method applied
to the SDE

d d dX X X= +
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Thus in the continuous limit the Poisson τ-leap
method can be viewed as the Euler-Maruyama method
applied to a form of the Chemical Langevin Equation.
Indeed Li [37] has shown that the Poisson τ-leap
method has mean square strong order 1

2
and weak

order 1 and this is consistent with the previous remarks.
In addition, equation (16) is a particular case of the gen-
eral SDE

d f d dX X g X= +
=

∑( ) ( ) .t Wk

k
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1

These relationships naturally lead to the introduction
of the class of Runge-Kutta τ-leap methods which bears
a relationship, similar to the one discussed above, to the
general class of Stochastic Runge-Kutta methods for sol-
ving SDEs [36]. This general class of explicit s-stage
Runge-Kutta τ-leap methods takes the form
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where L(τ, x) is given by (13) and f x x( ) ( )= =∑  j jj

m
a

1
represents the drift or expected stepchange. As our
focus is explicit methods, the matrix A is strictly lower
diagonal. We note that (17) requires the same number
of samples of Poisson random variables per step as the
Poisson τ-leap method.
The Poisson τ-leap method given by (11) and (12) is

equivalent to (17) with

s = = =1 0 11, , .A 

Indeed any Runge-Kutta method for solving an ODE
can be incorporated into this framework. We also note
that other methods proposed in the literature can be

put into this framework. For example, the midpoint
method of Gillespie [20] can be represented with s = 2,
bT = (0, 1), w = (0, 0.5)T and where the row-wise entries
of A are 0, 0, 0.5, 0.
The linear case
As in the case of stability settings in the ODE and SDE
regimes, we analyse (17) when applied to linear kinetics,
which in this case are described by sets of unimolecular
reactions. A general set of m unimolecular reactions can
be described by m propensity functions given by the fol-
lowing linear functions

a c x j mj ij

i

N

i j( ) , , , ,x c x= = = …
=
∑

1

1T (18)

where x is the state vector of dimension N and
c cj Nc

j j
= ( , , )1 

T , j = 1,...,m are m vectors of dimen-
sion N defining the propensities. A more convenient
way to describe this linear kinetics system is by using
the N × N matrix W

W c=
=

∑ j j

j

m
T ,

1

so that now the drift or expected step-change can be
represented as

f x c x Wx( ) .= =
=

∑ j

j

m

j

1

T

If the Runge-Kutta method for ODEs underlying a
Runge-Kutta τ-leap method (17) has stability function
given by (4), then when the latter is applied to (18) we
show (Additional file 1) that

 [ ] ( ) [ ],X W Xn nR+ =1  (19)

where R is the multidimensional version of (4) given
by (5). Note that this is a natural generalization of the
deterministic case when a Runge-Kutta method is
applied to the problem y’ = Λy giving Xn = R(hΛ)Xn-1.
Thus with fixed stepsize τ

 [ ] ( ) [ ].X W Xn
nR=  0 (20)

Therefore, boundedness in the mean requires that the
spectral radius, r, of R(τW) satisfies

 ( ( )) .R W ≤ 1

In order to analyse the framework (17) from the per-
spective of both mean and variance behaviour we con-
sider the reversible isomerisation reaction with fixed

Rué et al. BMC Systems Biology 2010, 4:110
http://www.biomedcentral.com/1752-0509/4/110

Page 5 of 13



total number of molecules given by

S S
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⎯ →⎯⎯← ⎯⎯⎯ , (21)

as the linear scalar test equation. It is easy to see that
this system is a analogous to (3) for ODEs and (10) to
SDEs with constant nonzero term. The system is chosen
to have constant nonzero term in order to compare its
variance, which otherwise would fade to zero, to the var-
iance given by the framework methods (17). In this case

W =
−

−
⎛

⎝
⎜

⎞

⎠
⎟

k

k k

k1 2

1 2
. (22)

.
For this set of reactions, the Chemical Master Equa-

tion (which describes the probability density function
associated with the evolving Markov process X) can be
solved analytically [18,38]. In particular, it can be shown
that the stationary state X* ( , )* *= X X1 2

T has a probabil-
ity density function (PDF) that follows a binomial distri-
bution with

P X x
T

x T x
p px N x( )

!
!( )!

( )*
1 1= =

−
− −

Where

p
k

k k
=

+
2

1 2

and T = X1(t) + X2(t) is the (fixed) total number of
molecules in the system. Thus from the properties of
the binomial distribution with e = (1, 1)T
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X e
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(23)

In the case of non-negative coefficients in the underly-
ing RK method and for constant τ one can show (see
details in Additional file 1) that if (17) is applied to (21)
with constant τ such that |R(z)| < 1, z = -τ(k1 + k2), then
in the limit as n ® ∞ the mean vector converges to the
theoretical mean, that is

lim [ ] [ ].
n

n
→∞

= X X*

Note that with the constraint |R(z)| < 1, z = -τ(k1 + k2)
then the spectral radius of R(τW) is less than or equal to
1, and as there is only one eigenvalue equal to one
hence we have boundedness of the mean.

Furthermore, if Var [X∞] denotes the variance of the
new method at steady state (X1 and X2 have the same
variance) and if R2(z) ≠ 1, z = -τ(k1 + k2), then (see
details in Additional File 1)

Var Var[ ] ( ) [ ],X X∞ = z *

where
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R z
R z
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⎝
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2 1
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We call this the relative variance at the stationary
state associated to R.
Let us consider some particular cases of this result:
Poisson τ-leap For this method R(z) = 1 + z and

 ( )z
z

=
+
1

1 1
2

. Thus, the equilibrium variance doubles at

z = -1, it rises fourfold at z = -1.5 and is unbounded at
z = -2.
Two stage methods with a21 ≠ 0 For the family of

explicit two-stage methods with a21 ≠ 0

0 0

021

1 2


 

the stability function is R(z) = 1 + z + gz2, where g =
b2a21 and the variance behaviour is determined by
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z z
= +
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1
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1
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2

In this case we have one free parameter of the
method, g, which allows us to control both the stability
function R and the relative variance at steady state. We
might be interested in setting g to a value that both
allows large time-steps to be used (by maximising the
region (-l, 0] for which z fulfils |R(z)| < 1) and keeps the
relative variance, ψ(z) close to one. In the case g ≤ 1

8 , ψ
grows as z becomes more negative. More interesting is
the case g > 1

8 , where the maximum and minimum of ψ
occur for 1 2+ = ± z , respectively and in this case

−
+

≤ ≤
−

2
8 1

2
8 1




 


( ) .z

Constraining ψ to be around 1 with a certain fixed tol-
erance �, |ψ(z) -1| < �, for a range z Î (-l, 0] to be maxi-
mised is achieved with

 = + +⎛
⎝⎜

⎞
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− +
⎡

⎣
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and with a stability region (-l, 0] with

l = −
−

− − +
−

⎛

⎝
⎜

⎞

⎠
⎟ −

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1
1

1
2

1
2

1
1

2
2

   
.

For instance, for 0.5 <ψ(z) < 1.5, setting g = 0.20096
gives a maximum stability region of (-3.68026, 0] and
thus the method

0 0

0 20096 0

0 1

. .

This is the methodology we propose in the following
section for the derivation of particular Runge-Kutta
methods with s steps. Note that if we required the same
limitation on the variance with the standard Poisson τ-
leap method we could only take z ∈ −( , ]2

3 0 . Thus with
the two stage method we can take a stepsize almost six
times as large.
Implicit midpoint rule For the implicit midpoint rule

1
2

1
2

1
1
2

1
1
2

1

1

R z
z

z
z z( ) ( ) , .=

+

−
= ∀and 

(25)

This was first shown by Cao et al. [38]. In fact only
those Runge-Kutta methods that have a stability func-
tion given by (25) can preserve the variance exactly for
linear problems. These methods include the implicit
midpoint and trapezoidal rules and have to be implicit.
Methods with bounded variance and extended stability
domain
For the general case of s stages we require ψ(z) to be as
close to 1 as possible for as large a range of z as possi-
ble, this is, for as large a range of z fulfilling the stability
condition |R(z)| < 1). We proceed by first showing that
if we consider a bound on the relative variance, ψ,
around one, we automatically fulfil the stability condi-
tions for a certain range. In this sense, let � ≥ 0 (and � <
1), we impose the constraint

| ( ) | z − <1  (26)

and optimise the value of ls, � such that the range for
which this holds is (-ls, �, 0].

Noticing from (24) that

R z

z
z

z
z

( )
( )

( )
,=

+

−

1
2

1
2




(27)

inequality (26) can be restated in terms of R(z)

1
2

1

1
2

1

1
2

1

1
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1

+ +

− +
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+ −

− −

z

z
R z

z

z

( )

( )
( )

( )

( )
,








(28)

with z Î (-ls �, 0]. Hence, we can translate constraints
in the relative variance into constraints in the stability
function. Since we are interested in constructing explicit
methods we can ask how we can make ψ(z) close to 1
in an explicit framework for which we already know the
stability function is a polynomial of at most degree s
(equation (6))

R z r zj
j

s
j( ) .= +

=
∑1

1

Thus, similar to the case s = 2 in which we had one
free parameter, g, to optimise, if we assume r1 = bTe = 1
then we have s - 1 parameters, r2,...,rs, we can optimise.
In this case, though, the search of the optimal set of
parameters has to be performed with numerical optimi-
sation methods rather than analytically. The problem of
finding optimal sets of parameters can be stated as a
nonlinear program, NLP, and thus its solution approxi-
mated numerically (see details in Additional file 1).
Figure 1 shows the stability function and relative var-

iance function for the Poisson τ-leap, and optimal meth-
ods for s = 3 and s = 5 under the constraints |ψ(z)-1| <
0.1, 0.25 and 0.5 and Table 1 summarises the numerical
values for these conditions.
Efficient methods with bounded variance and extended
stability
Runge-Kutta methods with a given stability polynomial
R(z) are not unique. This is because the stability polyno-
mial only reflects the application of a Runge-Kutta
method to a linear problem. Nonlinear problems require
many additional order conditions to be satisfied in order
for a method to have a certain order of accuracy. Thus
many different methods can have the same stability
polynomial. Furthermore, we have already seen that the
relative variance ψ does not directly depend on A but
on R(z) thus making all methods with the same stability
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function behave identically in terms of stationary var-
iance for linear problems. In order to distinguish
between methods with the same stability function we
would have to consider more complicated nonlinear
chemistry and this is beyond the scope of this work.
However, we have an explicit way of constructing an

efficient method that has a given stability polynomial (i.
e. to find values for b and A of the Butcher tableau, see
details in Additional file 1). Furthermore, the tableaus
build in this way are such that bs = 1, bj = 0, j = 0,...,s -
1 and A has all its elements set to zero except those on
the first subdiagonal. These Runge-Kutta schemes
obtained in this way are very natural, can be regarded as
fixed point iterations and allow the following efficient
reformulation of (17)

Y y

Y y f Y d

y y f Y d

1

1 1

1

2

=
= + + = …
= + +

− −

+

n

i n i i i n

n n s

i s 


, ( ( ) ), , ,

( )

for 

nn.

(29)

It is thus clear that these methods are computationally
more efficient than the general case as they only require
s-1 evaluations of the expected step-change f(·) instead
of the s(s - 1)/2 required in the general framework (17).
A collection of methods have been implemented in a
branch of the ByoDyn package, v.5.0 [39].

Numerical results
Reversible isomerisation
We compare the new Runge-Kutta framework to the
Poisson τ-leap to solve three systems of chemical reac-
tions. The first is the reversible isomerisation test pro-
blem in (21) for which we have already developed
theoretical results. Numerical simulation of the number
of molecules for each of the two components in the sys-
tem was carried out using the different methods dis-
cussed in the previous section with k1 = k2 = 10 (z =
-20τ) and X(0) = (100, 100)T. We sampled 106 trajec-
tories for each of the methods and for different fixed τ
values. Figure 2 shows a comparison between the true
probability density function (PDF) and the histograms of
X1 obtained from the different methods and some of the
values of τ. Note that the Poisson τ-leap method
becomes unstable for τ > 0.1 and so does RK τ-leap with
three stages for τ > 0.4. Figure 1 shows that the

Figure 1 Stability and relative variance for the different
methods. Stability and relative variance functions for the Poisson τ-
leap method (solid line) and RK τ-leap methods with optimal
stability regions and bounded relative variance (ψ) with 3 stages
(dotted line) and 5 stages (dashed line). Regions fulfilling the
bounds on ψ are shown in grey. Square dots correspond to relative
variances computed from 106 simulations each. (a), (b): Relative
variance bounded by 0.1. (c), (d): Relative variance bounded by 0.25.
(e), (f): Relative variance bounded by 0.5.

Table 1 Stability regions for methods with bounded
relative variance and optimal stability

Bound
(�)

Stages
(s)

Stability (ls, �) Factor vs. τ-
leap

Norm. factor τ-
leap

0.10 3 3.94566 19.73 6.58

5 10.1813 50.9 10.18

0.25 3 5.89563 14.74 4.91

5 11.0001 27.5 5.5

0.50 3 8.12004 12.18 4.06

5 15.5997 23.4 4.68

Factor vs. τ-leap corresponds to the relative increase in the step size with
respect to the Poisson τ-leap with the same bound in the variance (ls, �/lτ-leap).
Normalised factor vs. τ-leap takes into account the multiple stages of the
method (ls, �/(s·lτ-leap)).
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stationary variances obtained by the simulations are in
exact accordance with the theoretical values derived in
the previous section.
Schlögl reaction
We also consider Schlögl’s autocatalytic reaction system
[34,40] to illustrate the accuracy of the presented frame-
work, developed for the linear case, for nonlinear sys-
tems. We use here the same set of parameters as Cao et
al. [38] for which this system presents a bimodal PDF for
the species X in the stationary state. We have also consid-
ered that the non-autocatalytic species are buffered
(assuming they are constant) hence reducing the system
to a scalar problem (see Table 2). We have again per-
formed 106 simulations for each method and τ value.
Figure 3 shows histograms computed by the SSA, Pois-
son τ-leap and the methods with s = 3, 5. Visual inspec-
tion of the plots shows a consistent improvement over
the original τ-leap method by means of the multistage RK

methods developed here. A more precise comparison of
the plots is given in Figure 4, which shows the estimated
Kullback-Leibler divergences between the exact PDF (PE)
and the PDFs of each of these methods (PM), given by:

D P P P x
P x

P x
x

( , ) ( ) log
( )
( )

.E M E
E

M

=
⎛

⎝
⎜

⎞

⎠
⎟∑ 2 (30)

Figure 2 Histogram of X1 in the Reversible isomerisation reaction. Histogram of X1 in the Reversible isomerisation reaction (106 samples
used) solved by the SSA (grey background), Poisson τ-leap (dashed line), and optimal RK τ-leap methods with bounded relative variance. (a) τ =
0.05 (z = -1), Optimal RK τ-leap s = 3, � = 0.1 (solid line) and s = 5, � = 0.1 ("+” marks), (b) τ = 0.4 (z = -8), Optimal RK τ-leap s = 3, � = 0.5 (solid
line) and s = 5, � = 0.1 ("+” marks), Poisson τ-leap is unstable for this time step. (c) τ = 0.6 (z = -12), Optimal RK τ-leap s = 5, � = 0.5 ("+” marks),
Poisson τ-leap and Optimal RK τ-leap s = 3 are unstable for this time step.

Table 2 Details of the Schlögl reaction system

Reactions Parameters Propensities

A+2X{\tf="Symbol (TrueType)"\char 198}
k13X

k1 = 3·10-7 k1x(x - 1)A/2

3X{\tf="Symbol (TrueType)"\char 198}k2A
+2X

k2 = 10-4 k2x(x - 1)(x - 2)/
6

X{\tf="Symbol (TrueType)"\char 198}k3B k3 = 3.5 k3x

B{\tf="Symbol (TrueType)"\char 198}k4X k4 = 10-3 k4B
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Figure 3 Histogram of X in the Schlögl reaction. Histogram of X in the Schlögl reaction (106 samples used) solved by the SSA (grey
background), Poisson τ-leap (dashed line), and Optimal RK τ-leap methods. (a) τ = 0.4, Optimal RK τ-leap s = 3, � = 0.1 (solid line) and s = 5, � =
0.1 ("+” marks), (b) τ = 0.8, Optimal RK τ-leap s = 3, � = 0.5 (solid line) and s = 5, � = 0.5 ("+” marks).

Figure 4 Kullback-Leibler divergence for the Schlögl reaction. Kullback-Leibler divergence between the exact stationary distribution of X in
the Schlögl reaction (estimated by 106 samples solved by SSA) and the approximate stationary distributions obtained with the Poisson τ-leap
(black), Optimal RK s = 3; � = 0.5 (grey lines) and Optimal RK s = 5, � = 0.5 (white). Bars are shown only for the stable method and τ settings.
Asterisks denote methods that have a rate of failure above 10-3.
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The MAPK cascade
Finally, we have tested the performance of our methods
on a larger system of chemical reactions with stiffness
due to different reaction time scales and species
amounts ranging over several orders of magnitude. For
this purpose we considered the Huang and Ferrell
model for the mitogen-activated protein kinase (MAPK)
cascade [41]. This model is available from the BioMo-
dels database [42] and consists of 22 species interacting
through 30 reaction channels. The set of parameters
used here (see Additional file 1 for details) renders the
model stiff and with species amounts ranging from none
up to 3·105 molecules. With the chosen initial condi-
tions the system undergoes a transient change and
finally settles down into a stationary state at around t =
150 minutes. We have simulated the model using SSA
(Gillespie’s Direct Method), the Poisson τ-leap and the
RK methods presented here. To produce fair compari-
sons, all methods have been rewritten in ANSI C using
the Mersenne twister [43] pseudorandom number gen-
erator from the GNU Scientific Library. The GNU C
Compiler was used to compile the sources with the -O2
optimisation flag. The algorithms were run on an Intel
(R) Core(TM)2 Duo Processor E8500 at 3.16 GHz and 6
MB cache. We have run the system to a final time T =
200. Simulations run with SSA took 61, 841 ± 74
seconds.
We have compared the methods in two distinct situa-

tions. First we have run them with the same time step τ =
5·10-5. In this case, the Poisson τ-leap method took 51.7
± 0.4 seconds while Optimal RK τ-leap methods with s =
3 and s = 5 took 86.1 ± 0.4 seconds and 113.9 ± 0.3 sec-
onds respectively. Hence, at the same time step the RK
methods are approximately 66% and 120% slower than
the Poisson τ-leap due to the multiple evaluations of the
propensity functions per step. However, there is an
important difference in the results. The relative variance
at the steady state is 1.3 (see Additional file 1) for the
Poisson τ-leap while for both RK τ-leap methods with s =
3 and s = 5 (� = 0.1) it is less than 1.04.
Then we have compared these methods when run at

their respective maximum time steps such that the rela-
tive variance at the stationary state is bounded to 1.1
(estimated from the simulations). The maximum time
steps allowed with this constraint were: τ = 2·10-5 for
the Poisson τ-leap, τ = 3.5·10-4 for the RK τ-leap (3, 0.1)
and τ = 9.5·10-4 for the Optimal RK τ-leap (5, 0.1). With
this setting, the runtimes obtained were: 111.9 ± 0.7 sec-
onds for the Poisson τ-leap, 15.7 ± 0.06 seconds for the
RK τ-leap (3, 0.1) and 7.8 ± 0.02 seconds for the Opti-
mal RK τ-leap (5, 0.1). Thus, in this case the Poisson τ-
leap approximately 7.1 and 14.3 times slower than the
RK methods, respectively.

Discussion
Biochemical kinetics typically deals with multiscale pro-
blems, in which several scales of time, space and con-
centrations, simultaneously affect the dynamical
behaviour of the system. Thus, the systems biology com-
munity is deeply interested in the development of meth-
ods that lead to a multiscale view of biochemical
systems. As a first step in this workflow, we have pre-
sented here a new set of methods that considerably
expands the classical τ-leap implementation, from a sta-
bility perspective. The importance of the results shown
here embraces not only the increase in computational
speed for stochastic simulations, a key element for the
understanding of the intrinsically noisy biological sys-
tems, but more importantly, a way to deal with fast
reactions in multiscale settings. The methods developed
here have been demonstrated for a first example of stiff
system, the classical Schlögl autocatalytic reaction, and
can be straightforwardly incorporated into hybrid
SSASDE-ODE frameworks.
We see from Table 1 that if we require a bound on

the equilibrium variance of 0.1 then the Poisson τ-leap
method must take z

⋅
≤ 2

11 while for the RK methods
the bounds on |z| are approximately 4 and 10, respec-
tively with s = 3, 5. This is a very considerable improve-
ment and all the more striking given that the same
number of Poisson random variables are simulated per
step in all cases.
Initially we had hoped that an approach via Chebyshev

methods using ideas from ODEs and SDEs applied to
the discrete cases would have been fruitful. It turns out
that while such methods have good mean behaviour, the
variance behaviour is poor. This is because the variance
growth function satisfies (24) and an s-stage Chebyshev
method would have s - 1 poles and zeros due to the
oscillations in the stability function. Similar issues arise
even in the damped forms of the Chebyshev formula-
tion. This means that our optimisation approach is the
only way of getting good bounds on ψ(z).
Our results on the nonlinear bimodal Schlögl problem

show that the RK methods still behave appropriately
even on nonlinear problems. For example, from Figure 3
we see that the Poisson τ-leap method is not very accu-
rate with τ = 0.4 and quite poor in picking up the sec-
ond peak with τ = 0.8. On the other hand the RK
methods match the peak quite well, albeit with a slight
shift in that peak. Furthermore, numerical results from
the MAPK cascade simulations show that our methods
can run an order of magnitude faster than the Poisson
τ-leap and still give the same accuracy in the results.
Finally, we note that we could extend our RK methods

to allow more than one set of Poisson random variables
to be simulated per step. We imagine that this would

Rué et al. BMC Systems Biology 2010, 4:110
http://www.biomedcentral.com/1752-0509/4/110

Page 11 of 13



allow even bigger stepsizes but at the cost of taking
more simulation time in that the additional Poisson
sampling is expensive. We emphasise that although our
analysis of these new methods has been given for unim-
olecular reactions, the simulations of the nonlinear
Schlögl reaction and the MAPK cascade indicate that
these methods have a more general applicability and we
will consider nonlinear analysis via Taylor series expan-
sions in future work.

Additional material

Additional file 1: Supplementary material for “Simulation methods
with extended stability for stiff biochemical kinetics”. Technical
results, coefficients for the optimal stability polynomials and notes on the
mitogen-activated protein kinase (MAPK) cascade simulation results.

Acknowledgements
PR would like to thank Marta Dies for helpful discussions. PR acknowledges
Obra Social “la Caixa“ for funding through the Graduate Fellowship program.
Support from Spanish MCINN grant CTQ2008-00755/BQU and from EC-
funded projects BioBridge (FP6-2005-LIFESCIHEALTH-7 037909), QosCosGrid
(FP6-2005-IST-5 033883) and VPH (FP7-2007-IST-223920) is highly
appreciated. JVF participates in the COM-BIOMED network.

Author details
1Computational Biochemistry and Biophysics Group, Research Unit on
Biomedical Informatics, IMIM/Universitat Pompeu Fabra, c/Dr. Aiguader 88,
08003, Barcelona, Catalonia, Spain. 2Departament de Física i Enginyeria
Nuclear, Universitat Politècnica de Catalunya, Edifici GAIA, Rambla de Sant
Nebridi s/n 08222, Terrassa, Barcelona, Spain. 3Institute for Molecular
Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
4COMLAB and OCISB, University of Oxford, Oxford OX1 3QD, UK.

Authors’ contributions
KB, PR and JVF designed the research. KB and PR developed the algorithms
and PR implemented them and performed and analysed the simulations. KB,
PR and JVF wrote the manuscript. All authors have read and approved the
final version of the manuscript.

Received: 19 November 2009 Accepted: 11 August 2010
Published: 11 August 2010

References
1. Turner TE, Schnell S, Burrage K: Stochastic approaches for modelling in

vivo reactions. Computational Biology and Chemistry 2004, 28(3):165-178
[http://www.sciencedirect.com/science/article/B73G2-4CS4GV4-1/2/
f17f5571a06a80aaaaa53238eed83faf].

2. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H: Systems biology in
practice Wiley-VCH Weinheim 2005.

3. Wilkinson D: Stochastic Modelling for Systems Biology CRC Press 2006.
4. Villà J, Warshel A: Energetics and Dynamics of Enzymatic Reactions. J Phys

Chem B 2001, 105:7887-907.
5. McAdams H, Arkin A: Stochastic mechanisms in gene expression.

Proceedings of the National Academy of Sciences 1997, 94(3):814-819.
6. Hasty J, Pradines J, Dolnik M, Collins J: Noise-based switches and

amplifiers for gene expression. Proceedings of the National Academy of
Sciences 2000, 97(5):2075-2080.

7. Thattai M, van Oudenaarden A: Intrinsic noise in gene regulatory
networks. Proceedings of the National Academy of Sciences 2001, 151588598.

8. Ozbudak E, Thattai M, Kurtser I, Grossman A, van Oudenaarden A:
Regulation of noise in the expression of a single gene. Nature Genetics
2002, 31:69-73.

9. Isaacs F, Hasty J, Cantor C, Collins J: Prediction and measurement of an
autoregulatory genetic module. Proceedings of the National Academy of
Sciences 2003, 100(13):7714-7719.

10. Thattai M, van Oudenaarden A: Stochastic Gene Expression in Fluctuating
Environments. Genetics 2004, 167:523-530 [http://www.genetics.org/cgi/
content/abstract/167/1/523].

11. Tian T, Burrage K: Bistability and switching in the lysis/lysogeny genetic
regulatory network of bacteriophage [lambda]. Journal of Theoretical
Biology 2004, 227(2):229-237 [http://www.sciencedirect.com/science/article/
B6WMD-4B76G7M-1/2/64146757d7c19ee4acd0247e0d997cb5].

12. Bratsun D, Volfson D, Tsimring LS, Hasty J: Delay-induced stochastic
oscillations in gene regulation. Proceedings of the National Academy of
Sciences of the United States of America 2005, 102(41):14593-14598 [http://
www.pnas.org/content/102/41/14593.abstract].

13. Kaern M, Elston T, Blake W, Collins J, et al: Stochasticity in gene
expression: from theories to phenotypes. Nat Rev Genet 2005,
6(6):451-464.

14. Komili S, Silver P: Coupling and coordination in gene expression
processes: a systems biology view. Nature Reviews Genetics 2008, 9:38.

15. Halley J, Winkler D, Burden F: Toward a Rosetta stone for the stem cell
genome: Stochastic gene expression, network architecture, and external
influences. Stem Cell Research 2008, 1(3):157-168.

16. Kurtz TG: The Relationship between Stochastic and Deterministic Models
for Chemical Reactions. The Journal of Chemical Physics 1972,
57(7):2976-2978 [http://link.aip.org/link/?JCP/57/2976/1].

17. Gillespie DT: Exact stochastic simulation of coupled chemical reactions.
The Journal of Physical Chemistry 1977, 81(25):2340-2361 [http://pubs.acs.
org/doi/abs/10.1021/j100540a008].

18. Gillespie DT: Stochastic simulation of chemical kinetics. Annual review of
physical chemistry 2007, 58:35-55 [http://www.ncbi.nlm.nih.gov/pubmed/
17037977], [10.1146/annurev. physchem.58.032806.104637].

19. Gibson MA, Bruck J: Efficient Exact Stochastic Simulation of Chemical
Systems with Many Species and Many Channels. The Journal of Physical
Chemistry A 2000, 104(9):1876-1889 [http://pubs.acs.org/doi/abs/10.1021/
jp993732q].

20. Gillespie DT: Approximate accelerated stochastic simulation of chemically
reacting systems. The Journal of Chemical Physics 2001, 115(4):1716-1733
[http://link.aip.org/link/?JCP/115/1716/1].

21. Cao Y, Gillespie DT, Petzold LR: Efficient step size selection for the tau-
leaping simulation method. The Journal of Chemical Physics 2006, 124(4)
[http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normaln
\&id=JCPSA6000124000004044109000001\&idtype=cvips\&gifs=yes].

22. Tian T, Burrage K: Binomial leap methods for simulating stochastic
chemical kinetics. The Journal of Chemical Physics 2004,
121(21):10356-10364.

23. Chatterjee A, Vlachos DG, Katsoulakis MA: Binomial distribution based tau-
leap accelerated stochastic simulation. The Journal of Chemical Physics
2005, 122(2):024112[http://link.aip.org/link/?JCP/122/024112/1].

24. Auger A, Chatelain P, Koumoutsakos P: R-leaping: Accelerating the
stochastic simulation algorithm by reaction leaps. The Journal of Chemical
Physics 2006, 125(8):084103 [http://link.aip.org/link/?JCP/125/084103/1].

25. Monk NA: Oscillatory expression of Hes1, p53, and NF-kappaB driven by
transcriptional time delays. Curr Biol 2003, 13(16):1409-1413 [http://view.
ncbi.nlm.nih.gov/pubmed/12932324].

26. Yildirim N, Mackey MC: Feedback Regulation in the Lactose Operon: A
Mathematical Modeling Study and Comparison with Experimental Data.
Biophys J 2003, 84(5):2841-2851 [http://www.biophysj.org/cgi/content/
abstract/84/5/2841].

27. Barrio M, Burrage K, Leier A, Tian T: Oscillatory Regulation of Hes1:
Discrete Stochastic Delay Modelling and Simulation. PLoS Comput Biol
2006, 2(9):e117.

28. Leier A, Marquez-Lago TT, Burrage K: Generalized binomial tau-leap
method for biochemical kinetics incorporating both delay and intrinsic
noise. The Journal of Chemical Physics 2008, 128(20):205107 [http://link.aip.
org/link/?JCP/128/205107/1].

29. Anderson DF: A modified next reaction method for simulating chemical
systems with time dependent propensities and delays. The Journal of
Chemical Physics 2007, 127(21):214107 [http://link.aip.org/link/?JCP/127/
214107/1].

Rué et al. BMC Systems Biology 2010, 4:110
http://www.biomedcentral.com/1752-0509/4/110

Page 12 of 13

http://www.biomedcentral.com/content/supplementary/1752-0509-4-110-S1.PDF
http://www.sciencedirect.com/science/article/B73G2-4CS4GV4-1/2/f17f5571a06a80aaaaa53238eed83faf
http://www.sciencedirect.com/science/article/B73G2-4CS4GV4-1/2/f17f5571a06a80aaaaa53238eed83faf
http://www.genetics.org/cgi/content/abstract/167/1/523
http://www.genetics.org/cgi/content/abstract/167/1/523
http://www.sciencedirect.com/science/article/B6WMD-4B76G7M-1/2/64146757d7c19ee4acd0247e0d997cb5
http://www.sciencedirect.com/science/article/B6WMD-4B76G7M-1/2/64146757d7c19ee4acd0247e0d997cb5
http://www.pnas.org/content/102/41/14593.abstract
http://www.pnas.org/content/102/41/14593.abstract
http://link.aip.org/link/?JCP/57/2976/1
http://pubs.acs.org/doi/abs/10.1021/j100540a008
http://pubs.acs.org/doi/abs/10.1021/j100540a008
http://www.ncbi.nlm.nih.gov/pubmed/17037977
http://www.ncbi.nlm.nih.gov/pubmed/17037977
http://pubs.acs.org/doi/abs/10.1021/jp993732q
http://pubs.acs.org/doi/abs/10.1021/jp993732q
http://link.aip.org/link/?JCP/115/1716/1
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normaln\&id=JCPSA6000124000004044109000001\&idtype=cvips\&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normaln\&id=JCPSA6000124000004044109000001\&idtype=cvips\&gifs=yes
http://link.aip.org/link/?JCP/122/024112/1
http://link.aip.org/link/?JCP/125/084103/1
http://view.ncbi.nlm.nih.gov/pubmed/12932324
http://view.ncbi.nlm.nih.gov/pubmed/12932324
http://www.biophysj.org/cgi/content/abstract/84/5/2841
http://www.biophysj.org/cgi/content/abstract/84/5/2841
http://link.aip.org/link/?JCP/128/205107/1
http://link.aip.org/link/?JCP/128/205107/1
http://link.aip.org/link/?JCP/127/214107/1
http://link.aip.org/link/?JCP/127/214107/1


30. Hairer E, Norsett SP, Wanner G: Solving Ordinary, Differential Equations II. Stiff
and Differential-Algebraic Problems Springer-Verlag, Second Revised Editio
edition 2002, 2, [Index].

31. Abdulle A, Medovikov A: Second order Chebyshev methods based on
orthogonal polynomials. Numerische Mathematik 2001, 90:1-18.

32. Abdulle A, Cirilli S: S-ROCK: Chebyshev Methods for Stiff Stochastic
Differential Equations. SIAM J Sci Comput 2008, 997-1014 [http://portal.acm.
org/citation.cfm?id=1350482&jmp=cit&coll=GUIDE&dl=].

33. Hernandez D, Spigler R: Convergence and stability of implicit runge-kutta
methods for systems with multiplicative noise. BIT Numerical Mathematics
1993, 33(4):654-669.

34. Schlögl F: Chemical reaction models for non-equilibrium phase
transitions. Zeitschrift für Physik A Hadrons and Nuclei 1972, 253(2):147-161.

35. Øksendal B: Stochastic Differential Equations: An Introduction with
Applications (Universitext) Springer 2005 [http://www.amazon.ca/exec/
obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/3540047581].

36. Burrage K, Burrage PM: High strong order explicit Runge-Kutta methods
for stochastic ordinary differential equations. Applied Numer Maths 1996,
22:81-101.

37. Li T: Analysis of Explicit Tau-Leaping Schemes for Simulating Chemically
Reacting Systems. Multiscale Modeling and Simulation 2007, 6(2):417-436
[http://link.aip.org/link/?MMS/6/417/1].

38. Cao Y, Petzold LR, Rathinam M, Gillespie DT: The numerical stability of
leaping methods for stochastic simulation of chemically reacting
systems. J Chem Phys 2004, 121(24):12169-12178.

39. de Lomana ALG, Gómez-Garrido A, Sportouch D, Villà-Freixa J: Optimal
Experimental Design in the Modelling of Pattern Formation. LNCS 2008,
5101:610-619 [http://www.springerlink.com/content/kk7774170666m254/].

40. van Kampen NG: Stochastic Processes in Physics and Chemistry Elsevier 2007.
41. Huang CY, Ferrell JE: Ultrasensitivity in the mitogen-activated protein

kinase cascade. Proceedings of the National Academy of Sciences of the
United States of America 1996, 93(19):10078-10083 [http://www.pnas.org/
content/93/19/10078.abstract].

42. Novère NL, Bornstein BJ, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L,
Sauro HM, Schilstra MJ, Shapiro BE, Snoep JL, Hucka M: BioModels
Database: a free, centralized database of curated, published,
quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Research 2006, , 34 Database: 689-691.

43. Matsumoto M, Nishimura T: Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM
Transactions on Modeling and Computer Simulation 1998, 8:3-3.

doi:10.1186/1752-0509-4-110
Cite this article as: Rué et al.: Simulation methods with extended
stability for stiff biochemical Kinetics. BMC Systems Biology 2010 4:110.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Rué et al. BMC Systems Biology 2010, 4:110
http://www.biomedcentral.com/1752-0509/4/110

Page 13 of 13

http://portal.acm.org/citation.cfm?id=1350482&jmp=cit&coll=GUIDE&dl=
http://portal.acm.org/citation.cfm?id=1350482&jmp=cit&coll=GUIDE&dl=
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/3540047581
http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20\&amp;path=ASIN/3540047581
http://link.aip.org/link/?MMS/6/417/1
http://www.springerlink.com/content/kk7774170666m254/
http://www.pnas.org/content/93/19/10078.abstract
http://www.pnas.org/content/93/19/10078.abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Review of Runge-Kutta methods for SDEs and ODEs
	Stability region for RK methods applied to ODEs
	Stability region for RK methods applied to SDEs


	Results
	The &tau;-leap Runge-Kutta framework with bounded variance and extended stability domain
	The linear case
	Methods with bounded variance and extended stability domain
	Efficient methods with bounded variance and extended stability

	Numerical results
	Reversible isomerisation
	Schlögl reaction
	The MAPK cascade


	Discussion
	Acknowledgements
	Author details
	Authors' contributions
	References

