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Abstract: In this study, highly-interconnected porous titanium implants were produced by powder
sintering with different porous diameters and open interconnectivity. The actual foams were
produced using high cost technologies: Chemical Vapor Deposition (CVD), Physical Vapor Deposition
(PVD), and spark plasma sintering, and the porosity and/or interconnection was not optimized.
The aim was to generate a bioactive surface on foams using two different strategies, based on
inorganic thermo-chemical treatment and organic coating by peptide adsorption, to enhance
osseointegration. Porosity was produced using NaCl as a space holder and polyethyleneglicol
as a binder phase. Static and fatigue tests were performed in order to determine mechanical
behaviors. Surface bioactivation was performed using a thermo-chemical treatment or by chemical
adsorption with peptides. Osteoblast-like cells were cultured and cytotoxicity was measured.
Bioactivated scaffolds and a control were implanted in the tibiae of rabbits. Histomorphometric
evaluation was performed at 4 weeks after implantation. Interconnected porosity was 53% with
an average diameter of 210 µm and an elastic modulus of around 1 GPa with good mechanical
properties. The samples presented cell survival values close to 100% of viability. Newly formed
bone was observed inside macropores, through interconnected porosity, and on the implant surface.
Successful bone colonization of inner structure (40%) suggested good osteoconductive capability
of the implant. Bioactivated foams showed better results than non-treated ones, suggesting both
bioactivation strategies induce osteointegration capability.
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1. Introduction

Titanium (Ti) and its alloys have been widely used as constitutive material for dental and
orthopedic implants due to their excellent corrosion resistance and biocompatibility, and the
possibilities of direct contact between implant and bone [1,2]. Moreover, Ti-based porous scaffolds
have been used to fix implants to bone through bone ingrowth into the porous system, and even
as a bone substitute. In this regard, three-dimensionally interconnected pores allow an easy and
fast penetration of bone-forming cells, and attachment and proliferation of vascularized new bone,
thus providing a strong and durable implant–bone interaction [3]. The surface roughness of the porous
structure gives immediate primary mechanical stability to the implant due to the high friction forces
between the metal implant and peri-implant bone. Furthermore, the porosity of the system reduces
the implant’s Young’s modulus, improving load transfer to adjacent bone and avoiding deleterious
stress shielding and bone resorption [4].

A wide range of processes have been reported regarding the manufacture porous titanium implants,
such as polymeric sponge replication [5], compression and sintering [6], combustion synthesis [7],
selective electron beam melting [8,9], rapid prototyping [10,11], powder metallurgy (PM) [11–14],
selective laser melting [15,16], and selective laser sintering [14,17]. PM seems to be a particularly
advantageous method for manufacturing complex shapes with interconnected pores without the
need for machining steps [13,18] given its processing route and cost [13,18,19]. In PM, pores can
be originated from the particle arrangement when compacting or from changes in this arrangement as
spacer particles disintegrate, and from solid-state diffusion during the sintering step [20]. Pore size,
porosity, pore distribution, and interconnectivity can be well optimized using this technique.

Ti can also undergo surface modifications to improve cell adhesion and osseointegration [21–23],
and the surface of the porous system can be activated using different methods to potentiate
osseointegrative properties. The substrate material can be coated with nonstructural materials such as
calcium phosphates [24–26], demineralized bone matrix [26], bone marrow aspirate [27], platelet-rich
plasma [28], bone morphogenetic protein [29,30], mesenchymal stem cell [31,32], different types of
bioactive peptides [33,34], among others. The application of silanes has been studied and several
molecules are applied in biomedical applications [35,36]. However, effectiveness and safety of these
types of modification are not totally well-documented to date [37].

In this study, a highly-interconnected porous Ti scaffold obtained by PM, was treated using two
different biomimetic methods of surface activation:

(1) thermo-chemical treatment, which promotes the nucleation and growth of a bone-like apatite
layer over the Ti surface [38–42];

(2) grafting of an arginine-glycine-aspartic acid (RGD) cell adhesive peptide, derived from a bone
extracellular matrix (ECM) [43–46] on the surface of the scaffold. ECM-derived molecules, such as
RGD peptides, are capable of interacting with cell-expressed receptors like integrins, which trigger
the biological processes required for an optimal osseointegration [33].

The hypothesis of this study was to compare the osseointegration of the Ti porous foam between
two strategies of surface activation: an inorganic thermo-chemical treatment with the grafting bioactive
peptides on the surface of the scaffold.

The combination of sintered interconnected porous titanium with treatments of bioactivation
represents an excellent strategy to improve the osseointegration of vertebrae implants, and orthopedic
and maxillofacial prosthesis.

2. Results

2.1. Structure of Porous System

Table 1 shows the characteristics of the porous titanium structure obtained, the interconnected
porosity (I) of the scaffolds was 53% with macropores of 210 µm of diameter on average (P).
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Bioactivation of the scaffolds did not significantly modify such values of interconnectivity (Ti activated
thermo-chemically, 57%; Ti activated using peptides, 56%), showing no statistically significant
differences between treated and untreated samples in terms of pore size and/or interconnectivity.
The microroughness obtained by the grit-blasting process with alumina particles produced a roughness
of around 1 µm. The bioactive treatments do not affect microroughness.

Table 1. Characteristics of the original porous titanium structure, and with thermochemical treatment
and peptide adhesion treatment: P is the average size of the pores, I is the interconnectivity of
the porosity, and Ra is the roughness of the surface. References are the bibliographic references
from other similar studies where other biomedical porous materials have tested in order to make a
comparison with titanium foams.

Porous Material P (µm) I (%) Ra (µm) References

Ti porous 210 ± 9 57 ± 3 1.1 ± 0.1
Ti porous thermochemical 208 ± 10 57 ± 2 1.1 ± 0.2

Ti porous with peptides 210 ± 8 56 ± 3 1.3 ± 0.4
Ta porous 370 ± 15 65 ± 5 1.4 ± 0.2 [47,48]

NiTi porous 350 ± 12 63 ± 6 1.1 ± 0.1 [49,50]

The thermo-chemical treatment for bioactivation did not modify the porosity of the sintered
porous Ti samples, consistent with results of Mercury Intrusion Porosimeter (MIP) tests, because
the nanometric scale of coating thickness formed in both strategies, although it would modify
the surface composition, and the specific surface and the degree of oxidation, among the most
outstanding structural aspects [41,42]. At the structural level, the bioactivation treatment by RGD
would only cause changes at the level of chemical surface composition [43–46]. The same occurred
with the microroughness of the foams [38,44].

2.2. Mechanical Properties

The porous Ti implants produced in this study showed adequate mechanical properties and a Young’s
modulus (E) close to that of the cancellous bone (Table 2). Compression tests for the Ti porous material
revealed a yield strength of about 105 MPa with a maximum strength of 170 MPa, and a strain up to
fracture of 30%. It can be observed that the mechanical properties (σ0 and σmax) of titanium porous
implants with thermo-chemical and peptides adhesion treatments slightly increased, while strain to
fracture decreased. This phenomenon was ascribed to the incorporation of oxygen into the structure
producing these small variations. These values are higher than NiTi or Ta porous structures and other
highly interconnected biomaterials. Differences are mainly associated to the nature of the materials as
well as the processing method. The manufacturing process of porous tantalum used chemical vapor
deposition/infiltration (CVD/CVI) to create a porous metal construct. Cylinders of porous NiTi were
produced by self-propagating high temperature synthesis (SHS).

Table 2. Mechanical properties of the Ti foams tested in compression and fatigue. E is the Young’s
modulus, σ0 is the yield stress, σmax is the maximum strength, and ε is the strain to fracture obtained
by compression tests. For the fatigue test, σf is the fatigue limit at 1 × 108 cycles. The results have been
compared with other biomedical porous materials and with the cancellous bone.

Porous Material E (GPa) σ0 (MPa) σmax (MPa) ε (%) σf (MPa) References

Ti porous 0.61 ± 0.22 105.2 ± 10.8 170 ± 20.06 30.9 ± 4.6 16.4 ± 3.0
Ti porous with thermochem. 0.66 ± 0.12 116.2 ± 9.7 177 ± 15.22 27.0 ± 4.6 15.4 ± 3.2

Ti porous with peptides 0.63 ± 0.24 101.1 ± 9.8 165 ± 22.16 25.1 ± 4.6 13.5 ± 2.7
Ta porous 1.15 ± 0.86 35.2 ± 0.8 71.2 ± 15.6 8.1 ± 1.8 7.5 ± 3.6 [47,48]

NiTi porous 1.21 ± 0.31 101.3 ± 14.3 142.5 ± 29.3 23.0 ± 4.1 13.2 ± 4.2 [49,50]
Cancellous bone 0.55 ± 0.48 15.2 ± 8.0 25.0 ± 8.1 7.1 ± 3.0 [48]
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The fatigue behavior of the studied titanium porous implants indicated that the fatigue limit at
108 cycles was higher than the values of the tantalum foams and the NiTi foams, as can be observed in
Table 2, therefore showing excellent fatigue results. These results demonstrate that the mechanical
properties of porous titanium obtained by the present process are adequate for biomedical applications,
such as vertebral prosthesis. Ta prostheses are currently applied as spine spacers in humans.

2.3. In Vitro Characterization

Thermochemically treated samples were observed using Scanning Electron Microsocopy (SEM) after
10 days in a simulated body fluid (SBF) immersion to analyze the presence of apatite. SEM images and
an X-ray diffractogram showed apatite over the implant and inside the porous structure, as well as over
the Bioglass control (Figure 1). The presence of crystalline apatite over the Bioglass control validated
the proper execution of the bioactivity test, and on the other hand, apatite over the inner surfaces of
porous titanium samples reflect the bioactivity of the treatment. The peaks of Al2O3 were due to the
residual alumina particles on the titanium surface produced by the mechanical anchorage of the abrasive
particles with the titanium. The residual content was lower than 1%. These particles are bioinert and they
have no influence over the biological response [41,42].
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Figure 1. Surface images of different samples: (a) no activated porous Ti; (b) Bioglass control sample;
(c) cross-section of a porous sample with thermo-chemical treatment after its immersion in SBF, obtained
after the fracture of the specimen under cryogenic conditions showing apatite on the surface of porous
titanium foam; (d) magnification of the preceding image; (e) X-ray pattern of the layer deposited on
the surface with peaks corresponding to the apatite. Ti oxides are not usually observed, since the thickness
of the Ti oxide layer is less than 4 nm and it is completely coated with apatite of hundreds of µm.
Alumina particles have sizes from 40 to 100 µm and can be detected using the X-Ray Diffraction (XRD).
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Cells proliferated adequately on the porous samples until they reached confluence at 14 days
(Figure 2). In order to evaluate the cell colonization inside the porous titanium, cross-sections of
the material were studied at each cell-proliferation time-point. At initial culture times (4 and 24 h),
cells mainly occupied the surface of the samples without penetrating the porous structure. After 7 days of
cell culture, cells started to enter the pores, infiltrating more at 14 days. What is noteworthy, after 21 days,
cells proliferated inside inner pores almost filling them, as can be seen in the SEM micrograph of
Figure 2 showing cells inside the pores and interconnections of the core inner part of the porous
bioactivated samples.

No cytotoxic effect was observed when analyzing the treated samples by measuring the Lactate
Dehydrogenase (LDH) activity of osteoblastic Saos-2 cells. Cell survival rates were close to 100% of
viability (Figure 3).
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Int. J. Mol. Sci. 2018, 19, 2574 6 of 17
Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  6 of 17 

 

 

Figure 3. Viability of the cells in the biocompatibility test on porous samples of titanium with thermo-
chemical treatment. 

2.4. Osseointegration In Vivo 

All rabbits remained in good health for the whole duration of the follow-up with no evidence of 
inflammation or infection in the surgical site. During implant retrieval, no clinical signs of infection 
or adverse tissue reaction were observed around the surgical site. In total, 36 implants were harvested 
and considered for further analysis. 

Initial new bone formation was observed one week after implantation. After four weeks of 
implantation, all types of implants supported bone formation in the inner pores (Figure 4). 

 
Figure 4. Histology of the porous titanium 14 days after implantation; (a) without bioactive treatment; 
(b) with thermochemical treatment; (c) functionalized with peptide. Diameter of the samples was 3 
mm. 

Bone Implant Contact (BIC) and new bone formed in region of interest (ROI) results in the 
different areas are shown in Figure 5. Control and thermo-chemically treated samples presented the 
highest BIC values (39.41% and 39.81%, respectively). Samples biofunctionalized with the peptide 
yielded the lowest BIC values. 

With regard to ROI’s values, in general, non-treated samples showed a trend towards a reduced 
percentage of bone formed, although no statistically significant differences were observed with 
bioactivated samples. Thermo-chemically treated samples presented a trend of the highest ROI value 
in the most external quantified area (ROI1 = 42.33%). Nevertheless, peptide-treated samples showed 
a tendency of better ROI values for ROI2 and ROI3 inner areas (24.21% and 18.52%, respectively). 

Figure 3. Viability of the cells in the biocompatibility test on porous samples of titanium with
thermo-chemical treatment.

2.4. Osseointegration In Vivo

All rabbits remained in good health for the whole duration of the follow-up with no evidence of
inflammation or infection in the surgical site. During implant retrieval, no clinical signs of infection or
adverse tissue reaction were observed around the surgical site. In total, 36 implants were harvested
and considered for further analysis.

Initial new bone formation was observed one week after implantation. After four weeks of
implantation, all types of implants supported bone formation in the inner pores (Figure 4).
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Figure 4. Histology of the porous titanium 14 days after implantation; (a) without bioactive treatment;
(b) with thermochemical treatment; (c) functionalized with peptide. Diameter of the samples was 3 mm.

Bone Implant Contact (BIC) and new bone formed in region of interest (ROI) results in the different
areas are shown in Figure 5. Control and thermo-chemically treated samples presented the highest
BIC values (39.41% and 39.81%, respectively). Samples biofunctionalized with the peptide yielded
the lowest BIC values.

With regard to ROI’s values, in general, non-treated samples showed a trend towards a reduced
percentage of bone formed, although no statistically significant differences were observed with
bioactivated samples. Thermo-chemically treated samples presented a trend of the highest ROI value
in the most external quantified area (ROI1 = 42.33%). Nevertheless, peptide-treated samples showed
a tendency of better ROI values for ROI2 and ROI3 inner areas (24.21% and 18.52%, respectively).
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Figure 5. New bone formation in titanium porous foam at 4 weeks after implantation. (*) means
there were no statistically significant differences (p > 0.05) depending on the type of samples for all
analyzed parameters.

3. Discussion

The most common cause of bone implant failures is an impaired implant fixation and stability as
a result of a poor osseointegration (i.e., insufficient bone ongrowth or ingrowth). Another relevant
problem is the resorption and bone remodeling of surrounding bone through the stress-shielding effect
induced by the stiffness of the implant [51–54]. An improved biological fixation can be attained by
modifying the structure of the bulk material and combining micro-nano physico-chemical features
on the surface of the constitutive material. Such a strategy would overcome both the two main
disadvantages of metallic biomaterials: their rigidity and lack of biological recognition. To this end,
in this work we have produced porous scaffolds that have been bioactivated at the surface level.

Porous implants are able to achieve optimal levels of biological fixation, while at the same time
reducing the elastic modulus and relieving the stress-shielding phenomena [53–57]. For instance,
introducing porosity to commercially pure titanium, the modulus of elasticity could be reduced from
110 GPa to less than that of the human cancellous bone [54,56,57]. Nonetheless, a certain balance
must be maintained between the lessening of the Young’s modulus and the strength reduction when
increasing the implant porosity [3].

Fatigue tests that exceeded 108 cycles were always performed below the elastic limit,
which explains why the samples tested retained the same initial porosity and structure, and why no
statistically significant changes were observed in their elastic modulus. In the last three cycles before
the fracture, a plastic deformation and a decrease in the porosity due to the collapse of the pores were
observed, with an approximate increase in the elasticity modulus of 10%. However, this material
in its usual applications, being always in the elastic regime, will not suffer changes in the modulus
of elasticity.

PM has proved to be an effective method to produce porous scaffolds with an open-cell structure
and interconnected pores for biomedical applications, allowing an adequate control of pore size and
porosity to promote bone ingrowth [11,13]. This method creates macro- and micropores, facilitating
bone ingrowth, vascularization, and bodily fluid flow throughout [51,52]. The pore dimensions
are determined by the size of the space holders and titanium powder particles respectively [53].
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Sieved NaCl particles were selected as a space holder agent [54,55] in our study due to their ability
to completely decompose at low temperatures, avoiding reactions with the titanium powder and
the formation of impurities within the foam [56].

The pore size and porosity in our study were within the ranges considered optimal in the literature,
approximately 50% of porosity with pores between 100 and 400 µm [13,21,51,54,57–62], chosen as
a compromise between capability and the rate of bone ingrowth [3,63], while maintaining the mechanical
strength of the porous material [11,18,20,64,65]. Our porous scaffolds exhibited adequate static and
dynamic mechanical properties for clinical use under load-bearing conditions, and excellent biomechanical
compatibility with the Young’s modulus more similar to that of the cancellous bone than other metallic
foams, such as NiTi and tantalum [66–68], which have also been widely used in orthopedic applications.

All the materials used in this study have shown to be perfectly biocompatible with osteoblast-like
cells. The treated samples with the thermo-chemical method did not display any cytotoxic effect.
Ti and Ti functionalized with RGD were devoid of toxicity for osteoblastic cells. This has been proved
in a large number of previous studies. In particular, we have demonstrated that functionalizing Ti
surfaces with RGD peptides using silanization showed no toxicity for cells and supports excellent
proliferation rates for osteoblasts and mesenchymal stem cells [43,46].

In order to enhance cellular adhesion and organization within the porous scaffold, we have
used the thermo-chemical treatment method, with a well-demonstrated capacity to improve
osteoconductivity as well as osteoinductivity [39,62]. Alternatively, we have also used RGD peptides to
integrate cell-recognizable ligands and signaling on the surface of the scaffold to stimulate cell adhesion,
proliferation, and differentiation. There is evidence that RGD-peptides, known as recognition motifs
for several integrins, promote cellular adhesion, influence cellular proliferation, and differentiation
of local cells. However, in this study, the RGD-coating did not show an advantage in comparison
with the thermo-chemically biofunctionalized Ti, as it was also shown by other authors comparing
RGD-coated Ti with polished and sandblasted Ti [52,59,69].

This behavior could be related to a different mechanism of interaction for each strategy.
The thermo-chemical treatment generates a sodium titanate layer on the implant surface, promoting
apatite formation and deposition over the implant surface, providing the mineral phase and enhancing
new bone ongrowth on the external surface of implant. This fact could explain the highest trend
in BIC and ROI1 observed for thermo-chemical treated samples, whereas it could be more difficult
for new bone formation to get into the inner porous structure. However, bone ingrowth was also
detected inside the porous scaffold, but at a lower rate. It could be argued that the thermo-chemical
treatment was more efficient on the external and peripheral areas of the implant, thereby ensuring
better primary implant fixation. In the inner zones of the implant, a peptide treatment could improve
bone ingrowth inside the porous material more than the thermo-chemical treatment, producing better
results in the internal areas in terms of bone ingrowths and vascularization (i.e., ROI2 and ROI3).

The rate of bone ingrowth into the porous specimens was in the order shown by Baril et al. [57],
as can be expected using analogous experimental conditions. Our results are also similar to those
reported by Vasconcellos et al., with a Ca/P ratio at the bone-implant interface and bone ingrowth
remarkably enhanced at 4 weeks in the porous scaffolds of pure Ti fabricated by PM and inserted in
the proximal tibia of 21 rabbits [13], and comparable to those of Ponader et al. concerning bone ingrowth
in selective electron beam-melted Ti–6Al–4V porous structures implanted in the frontal skull of domestic
pigs, but noticeably poorest for the bone-implant contact [9]. The surface activity of the diverse materials
and the different experimental conditions may be in the base of the variations observed in the results.

Nonetheless, it should be noted that the values observed were not statistically significant and
therefore these assumptions should be taken with caution.
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4. Material and Methods

4.1. Scaffold Production

The porous titanium scaffold was produced using a PM technique by mixing commercially
pure titanium (CP) Grade 2, with a mean grain size of about 80 µm, with NaCl particles ranging
from 300 to 600 µm of diameter as a space holder, in a 65-to-35 percent volume ratio. The NaCl
“space holder” particle size distribution was analyzed using laser granulometry by using a Beckman
Coulter LS Particle Size Analyzer (Beckman Coulter Life Sciences, Indianapolis, IN, USA), with a
normal distribution of particle diameter that had a mean value of 496.4 µm and a Standard Deviation
(SD) of ±119.7 µm. In order to homogenize the mixture, ethylene glycol (15 wt.%) was added as a
binder phase and removed at 200 ◦C in air.

The mixture was uniaxially pressed under 100 MPa in a stainless-steel mold and then isostatically
pressed under 200 MPa. The space holder was removed by washing samples several times with
distilled water, ensuring the total removal of NaCl by controlling the electrical conductivity of
the rinsing water until conductivity remained stable. Sintering of porous titanium was carried out
at 1350 ◦C for 2 h under high vacuum conditions at 5 × 10−4 mbar. Characterization of micro- and
macroporosity size (pore diameters greater than 10 µm) and evaluation of porosity interconnections
were done using mercury immersion porosimetry (MIP) by using AutoPore IV 9500 V1.07 equipment
(MIP, Micrometrics, Norcross, GA, USA) [36]. MIP tests used a 3 cm−3 penetrometer and tridistilled
mercury (Panreac, Barcelona, Spain). An intrusion pressure series was analyzed between 0.0034 MPa
(0.5 psia) and 206.84 MPa (30,000 psia).

Implants with microestructured surfaces have been reported to have a more intensive bone implant
contact than implants with smooth machined surfaces, resulting in higher mechanical retention when
implanted in humans [37,38]. For this aspect, all samples were treated with alumina particles (90–120 µm
in size) with a 0.25 MPa blasting pressure until achieving a roughness saturation. Surface profiles were
measured with a contact 2-D profilometer (Surftest SV500©, Mitutoyo, Neuss, Germany), and roughness
profiles were calculated by filtering the surface profiles with a Gaussian filter. A 0.8-mm “cut-off”
value was applied for filtering. The Ra (arithmetic average of peak-valley height) and Pc (number of
falling flanks in a given distance) were calculated from the roughness profiles with appropriate software
(SurfpackTM v3.00, Mitutoyo, Japan), according to international standards (ISO4287:1997).

The sintered cylindrical samples used for in vivo implantation presented an average diameter
of 3 mm and a length of 6 mm. Cylindrical samples used for mechanical characterization and cell
assay presented an average diameter of 10 mm, and a length of 15 mm according to the ISO 13314
standard and 2 mm of thickness, respectively. Six cylinders were embedded in acrylic resin and sectioned
radially with a low-speed diamond-disc cutter (EXAKT 310 CL; EXAKT Advanced Technologies GmbH,
Norderstedt, Germany) and polished lightly using increasingly fine sandpapers (600, 800, and 1200 grit).
Metallographic examination was done using optical microscopy (Olympus 300, Tokyo, Japan) and
scanning electron microscopy (JEOL 6400; JEOL USA Inc., Peabody, MA, USA) on different sections of
these specimens.

4.2. Surface Bioactivation

Surface bioactivation was achieved by either one of two methods.

4.2.1. Thermo-Chemical Treatment

The thermo-chemical procedure consisted of samples being immersed in 5 M NaOH at 60 ◦C for
24 h, followed by drying at 60 ◦C for 24 h. A 600 ◦C heating was performed in an ending step for
1 h [36,39–42]. This method created the appearance of a microporous layer made up of an alkaline
titanate hydrogel formed during the alkaline/heat treatment. This surface layer is an amorphous
sodium titanate layer containing small amounts of a mixture of crystalline sodium titanates (Na2Ti5O11)
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and rutile (TiO2). During the alkali treatment, the surface passive TiO2 layer partially dissolved into
an alkaline solution because of the corrosive attack of hydroxyl groups [41,42].

TiO2 + OH− → HTiO3−

This reaction is assumed to proceed simultaneously with the following hydration of the Ti
metal [40–42].

Ti + 3OH− → Ti(OH)3+ + 4e−

Ti(OH)3+ + e− → TiO2·H2O + 0.5 H2 (g)

Ti(OH)3+ + OH− ⇔ Ti(OH)4

A further hydroxyl attack to hydrated TiO2 produced negatively charged hydrates on the surfaces
of the substrates as follows:

TiO2·nH2O + OH− ⇔ HTiO3−·nH2O

These negatively charges species were combined with alkali ions in the aqueous solution,
resulting in the formation of an alkali titanate layer. During heat treatment, the hydrogel layer
was dehydrated and densified the titanate layer.

When exposed to simulated body fluid, the alkali titanate layer was again hydrated to transform
into TiO2 hydrogel via the release of alkali ions from the alkali titanate layer in SBF. The alkali release
and the ion exchange with H3O+ ions in the simulated body fluid, resulting in a pH increase in
the surrounding fluid. The pH increase gave rise to an increase in the ionic activity product of apatite
according to the following equilibrium in simulated body fluid [41,42].

10Ca2+ + 6PO4
3− + 2OH− ⇔ Ca10(PO4)6(OH)2

Then, the samples were evaluated using scanning electron microscopy (SEM) and energy dispersive
X-Ray spectroscopy (EDS) to visualize and identify apatite on the treated surfaces [47,49,59].

The human osteoblast cultures revealed that bioactive titanium surfaces had a better cell response
than positive and negative controls [39,40]. The apatite layer had a significant effect on the adhesion
(cell count) and differentiation (osteocalcine concentration) of osteoblast-like cells [39–42].

4.2.2. Peptide Adhesion

Alternatively, bioactivation of the metallic foams was achieved using covalent grafting
of an RGD cell-adhesive peptide. This peptide (Figure 6) is comprised of the sequence
Gly-Arg-Gly-Asp-Ser (GRGDS) as a cell-binding motif, and three units of 6-aminohexanoic acid
(Ahx) and 3-mercaptopropionic acid (MPA) as a spacer-anchoring moiety [43–46]. This peptide was
synthesized in a solid-phase as previously reported [43].
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Peptide attachment was accomplished by means of silanization. To this end, surfaces were initially
cleaned and passivated with 65% (v/v) HNO3 for 1 h at room temperature. After this time, samples
were rinsed in distilled water, ethanol, and acetone, and dried under nitrogen gas. Next, samples were
immersed in 2% (v/v) of (3-aminopropyl) triethoxysilane (APTES; Sigma-Aldrich, St. Louis, MO, USA)
in anhydrous toluene and silanized for 1 h at 70 ◦C under a nitrogen atmosphere. This treatment was
followed by ultrasonication for 5 min in toluene to remove non-covalently bound silanes, copious washes
in water and organic solvents, and curing of the silanes at 120 ◦C for 5 min. To ensure a chemoselective
binding of the peptide via its anchor group (a thiol functionality) to the surfaces, the silane layer was
further modified by reaction with 2 mg/mL of the 3-maleimidopropionic acid N-hydroxysuccinimide
ester (Alfa-Aesar, Karlsruhe, Germany) in N,N-dimethylformamide (DMF) for 1 h at room temperature.
Finally, silanized samples were each coated with a solution of RGD peptide at 200 µM in Physiological
Body Solution (PBS) (pH 6.5) overnight at room temperature. Control surfaces were only treated
with a buffer. After peptide conjugation, samples were washed with PBS, sterilized with 70% (v/v)
EtOH during 20 min, and dried. Such a protocol of biofunctionalization has been characterized in
previous studies [41–44].

4.3. Mechanical Properties

Mechanical properties were evaluated using compression and fatigue tests by using a MTS Bionix 370
(MTS, Eden Prairie, MN, USA) for the titanium porous structures with and without bioactive treatments.
Compression tests were done according to ISO Standard 13314 for porous metals, measuring the elastic
modulus and ultimate compressive strength of the cylindrical samples. Five specimens of each material
were analyzed in compression tests at a cross-head speed of 2.5 mm·min−1. The fatigue tests were
performed in compression–compression mode, using frequencies of 15 Hz and 37 ◦C in a physiological
medium with a maximum number of cycles of 1 108 to determine the fatigue limit strength. Fatigue tests
were done under a load control, introducing a limit of displacement too, at different load levels of 40%,
50%, 60%, and 80% of the ultimate compressive strength. At least two samples were evaluated at each
load level to establish the fatigue curve and the load was applied as a sine wave function [48,49].

4.4. In Vitro Biological Characterization

In vitro biological characterization was performed by culturing SaoS-2 osteoblast-like cells (ATCC
HTB 85, Manassas, VA, USA) in McCoy’s 5A Medium (Sigma-Aldrich) supplemented with 10% (v/v)
fetal bovine serum (FBS), 2mM glutamine, 20 mM HEPES buffer, penicillin/streptomycin (50 U/mL
and 50 µg/mL), and 1 mM sodium pyruvate (Invitrogen, Carlsbad, CA, USA). Cells were maintained
in an incubator at 37 ◦C in a humidified atmosphere and at 5% (v/v) CO2. SaoS-2 cells were seeded in
48-well plates to cover the porous samples placed in each well and incubated for 21 days.

Cell proliferation was analyzed at 4 and 24 h, and 7, 14, and 21 days after cell seeding by measuring
the LDH activity as described above. For this assay, 50 103 cells were cultured and lysed with 300 µL
of Mammalian Protein extraction reagent (M-PER) at each specified time.

Cell colonization was visualized by SEM at the same time points as the cell proliferation assay.
Cells were fixed with 2.5% glutaraldehyde in a 0.1 M phosphate buffer (PB) at 4 ◦C for 1 h and
rinsed (3 times) with PB. Then, cells were immersed in 1% osmium tetroxide solution at room
temperature to increase the electron contrast. Fixed samples were dehydrated in a graded ethanol
series (50%, 70%, 90%, 96%, and 100%) and completely dehydrated in hexamethyldisilazane (HDMS,
Sigma-Aldrich). Dried samples were observed using a field emission scanning electron (FIB/SEM)
Zeiss Neon 40 (Carl Zeiss NTS GbmH, Oberkochen, Germany) at 5 kV without any gold or graphite
coating. Bioglass samples (CaO–P2O5–SiO2) were used as control due to their known ability to produce
a precipitation of a bioactive hydroxycarbonated apatite layer when immersed in biological fluids that
can bond to biological tissue [2], as accepted in many references of published scientific literature.

Cytotoxicity was measured by indirect exposition following the ISO 10993-5 standard [43].
Briefly, samples were incubated in a complete medium for 72 h. Then, 5 103 cells were exposed
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to different dilutions (1, 1:1, 1:10, 1:100, and 1:1000 in complete medium) of the conditioned
supernatant for 24 h. Cells were lysed with 100 µL of mammalian protein extraction reagent
(M-PER; Thermo-Scientific, Rockford, IL, USA). Afterwards, lactate dehydrogenase (LDH) activity
was measured by means of a conventional colorimetric assay using the LDH Cytotoxicity Detection kit
(Roche Applied Science, Mannheim, Germany). Cells cultured in tissue culture polystyrene (TCPS)
were used as a positive control and wells without cells were used as negative control. Absorbance
was measured spectrophotometrically at 492 nm using a Power Wave Microplate Spectrophotometer
(BioTek, Winooski, VT, USA). The percentage of cell survival was calculated as follows: cell survival
(%) = [((experimental value − negative control)/(positive control − negative control)) × 100] [50,70].

4.5. In Vivo Model of Osseointegration

In vivo study was carried out in eighteen female adult New Zealand White (NZW) rabbits
(Charles River, Saint Aubin les Elboeuf, France) aged six months, with an average body weight of
5 kg (range 4–6 kg). The study UIC-09432-2016 (23 July 2016) was approved by the Research Ethical
Committee of the Facultad de Veterinaria of the Universidad Autónoma de Barcelona (UAB) and
conducted according to the European Community guidelines for the care and use of laboratory animals
(DE 86/609/CEE).

Rabbits were kept in individual cages and fed with commercial food and water ad libitum.
The animals were anaesthetized by subcutaneous administration of Midazolam, Buprenorfine,
and Medetomidine, followed by Alfaxalone for induction, without endotracheal intubation, and
then maintained with Isoflurane and oxygen by mask during surgery.

The surgical procedure was performed under standard sterile conditions. After aseptic
preparation of the surgical field, a skin incision was made in the lateral aspect of the distal femur.
Once the subcutaneous fascia was dissected, metaphyseal bone was exposed and one monocortical
hole was drilled in each femur with a 3 mm drill bit. The cylinder was introduced press-fit into
the defect until it was flush with the cortex. The rabbits underwent bilateral surgery and received
one sample in each femur, being samples of different type in each side of each animal. Rabbits were
randomly divided into three groups. Six rabbits were operated on by placing a sample of type 1 in
the right femur and a sample of type 3 in the left femur (group 1); six others carried a sample of type 2
in the right femur and a sample of type 3 in the contralateral femur (group 2); and a type 1 sample was
implanted in the right femur and a sample of type 2 in the contralateral side in the other six rabbits
(group 3). Thus, twelve specimens of each sample type were implanted.

The rabbits were euthanized under general anesthesia, 4 weeks after implantation by
an intramuscular injection of sodium pentobarbiturate 200 mg/Kg (Dolethal, Vetoquinol, France).
The segments of the femoral containing the implant were excised and immediately fixed in 10%
formaldehyde solution to preserve tissue structure.

4.6. Preparation of Histological Samples

Samples were processed following the Donath method [43]. They were cut by a diamond saw
EXAKT 310 CL (EXAKT Advanced Technologies GmbH, Norderstedt, Germany) to obtain bone
sections that did not exceed 4 mm in thickness. Obtained pieces were immersed in formaldehyde
solution for 48 h to assure bone tissue fixation. Samples were dehydrated by immersion in increasing
concentrations of ethanol solutions (30%, 50%, 75%, 96%, and 100% v/v) for periods of 3 days each with
constant stirring at 50 rpm. Once totally dehydrated, samples were embedded in methyl-methacrylate
resin (Technovit 7200; Kulzer-Heraus GmbH, Wehrheim, Germany) using increasing concentration
solutions of resin with ethanol (30%, 50%, 70%, and 100% v/v) for periods of 3 days each with constant
stirring at 50 rpm. Samples at 100% resin solution were kept under vacuum conditions for 48 h to
guarantee proper resin penetration into tissues. Then, samples were photo-polymerized in a light
control unit (Histolux; Kulzer GmbH, Wehrheim, Germany) with external water cooling system.
Samples were exposed to white light for 4 h, and 12 h to UV light, to obtain a solid transparent block
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to allow sample cutting and polishing, and avoiding any kind of fracture and/or pull-out of tissues
during these procedures.

Resin blocks were cut into several cross-sections by the Exakt diamond saw with continuous water
irrigation at a maximum rotation speed with minimum charge. Samples were polished by means of
a grinding machine Exakt-400CS (EXAKT Advanced Technologies GmbH, Norderstedt, Germany),
with parallelism control and using SiC progressively abrasive papers (600, 800, and 1200 grit).
Finally, polished samples were carbon-coated using a sputtering technique for SEM examination under
vacuum conditions. A nanometric carbon thin film deposited on the polished samples allowed for their
correct analysis by SEM, and backscattered electrons detector (BSE) allowed the surface composition
analysis required to identify and distinguish bone tissues from the titanium metal.

4.7. Histomorphometrical Characterization

Polished samples were observed individually using a FIB-SEM “Surface Scanning Electron
Focused Ion Beam” (Carl Zeiss NTS GbmH, Oberkochen, Germany) equipment with a backscattered
electron detector. Observation conditions were 15 kV of potential at 8 mm of working distance to
achieve a resolution up to 1.1 nm in SEM-BSE mode.

SEM evaluation was performed by carrying out a sequential scan of polished transversal section
surfaces of the cylindrical samples implanted. A total of nearly 150 SEM micrographs were merged by
Image-J 1.46R software (ImageJ, NIH, Bethesda, MD, USA) for each sample to create a high-resolution
and quality single picture at high magnification. Merged images were processed using Photoshop
(Adobe Systems, Dublin, Ireland) and ImageJ in order to calculate the BIC, ROI, and total new
bone formation.

BIC was used to quantify the percentage of bone tissue in intimate contact with the external perimeter
implant. Newly formed bone around the implant and over its external surface corresponded to bone
on-growth. New bone formed inside the porous structure was evaluated through ROIs quantification.
Established ROIs consisted of four concentrically areas inside the implant surface from the perimeter
to the center: ROI1, ROI2, ROI3, and center area [46]. ROI’s quantification was used to determine bone
in-growth inside the porous scaffold (Figure 7). The total newly formed bone was calculated, taking into
account the available space for bone growth throughout the interconnected porous scaffold.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  13 of 17 

 

Resin blocks were cut into several cross-sections by the Exakt diamond saw with continuous 
water irrigation at a maximum rotation speed with minimum charge. Samples were polished by 
means of a grinding machine Exakt-400CS (EXAKT Advanced Technologies GmbH, Norderstedt, 
Germany), with parallelism control and using SiC progressively abrasive papers (600, 800, and 1200 
grit). Finally, polished samples were carbon-coated using a sputtering technique for SEM 
examination under vacuum conditions. A nanometric carbon thin film deposited on the polished 
samples allowed for their correct analysis by SEM, and backscattered electrons detector (BSE) 
allowed the surface composition analysis required to identify and distinguish bone tissues from the 
titanium metal. 

4.7. Histomorphometrical Characterization 

Polished samples were observed individually using a FIB-SEM “Surface Scanning Electron 
Focused Ion Beam” (Carl Zeiss NTS GbmH, Oberkochen, Germany) equipment with a backscattered 
electron detector. Observation conditions were 15 kV of potential at 8 mm of working distance to 
achieve a resolution up to 1.1 nm in SEM-BSE mode. 

SEM evaluation was performed by carrying out a sequential scan of polished transversal section 
surfaces of the cylindrical samples implanted. A total of nearly 150 SEM micrographs were merged 
by Image-J 1.46R software (ImageJ, NIH, Bethesda, MD, USA) for each sample to create a high-
resolution and quality single picture at high magnification. Merged images were processed using 
Photoshop (Adobe Systems, Dublin, Ireland) and ImageJ in order to calculate the BIC, ROI, and total 
new bone formation. 

BIC was used to quantify the percentage of bone tissue in intimate contact with the external 
perimeter implant. Newly formed bone around the implant and over its external surface 
corresponded to bone on-growth. New bone formed inside the porous structure was evaluated 
through ROIs quantification. Established ROIs consisted of four concentrically areas inside the 
implant surface from the perimeter to the center: ROI1, ROI2, ROI3, and center area [46]. ROI’s 
quantification was used to determine bone in-growth inside the porous scaffold (Figure 7). The total 
newly formed bone was calculated, taking into account the available space for bone growth 
throughout the interconnected porous scaffold. 

 
Figure 7. Scheme for assessment of BIC and ROI values. 

5. Conclusions 

After 4 weeks of implantation, no statistically significant differences were observed between the 
untreated scaffolds and the bioactivation treatments. However, comparing the two methods, the 

Figure 7. Scheme for assessment of BIC and ROI values.



Int. J. Mol. Sci. 2018, 19, 2574 14 of 17

5. Conclusions

After 4 weeks of implantation, no statistically significant differences were observed between
the untreated scaffolds and the bioactivation treatments. However, comparing the two methods,
the thermo-chemical treatment strategy seems to be the best option to enhance and accelerate bone tissue
growth over the implant surface according to the BIC values achieved, while the peptide strategy yielded
better trends in the inner core areas. We believe that further studies at longer time points are warranted
to confirm these trends.
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