Identifying non-adult attention-deficit/hyperactivity disorder individuals using a stacked machine learning algorithm using administrative data population registers in a universal healthcare system
Visualitza/Obre
Data de publicació
2023ISSN
2692-9384
Resum
Background: This research project aims to build a Machine Learning algorithm (ML) to predict first-time ADHD diagnosis, given that it is the most frequent mental disorder for the non-adult population. Methods: We used a stacked model combining 4 ML approaches to predict the presence of ADHD. The dataset contains data from population health care administrative registers in Catalonia comprising 1,225,406 non-adult individuals for 2013–2017, linked to socioeconomic characteristics and dispensed drug consumption. We defined a measure of proper ADHD diagnoses based on medical factors. Results: We obtained an AUC of 79.6% with the stacked model. Significant variables that explain the ADHD presence are the dispersion across patients' visits to healthcare providers; the number of visits, diagnoses related to other mental disorders and drug consumption; age, and sex. Conclusions: ML techniques can help predict ADHD early diagnosis using administrative registers. We must continuously investigate the potential use of ADHD early detection strategies and intervention in the health system.
Tipus de document
Article
Versió del document
Versió publicada
Llengua
Anglès
Matèries (CDU)
61 - Medicina
Paraules clau
Pàgines
10
Publicat per
John Wiley & Sons
Col·lecció
4; 1
Publicat a
JCPP Advances
Citació recomanada
Roche, David; Mora, Toni; Cid, Jordi. Identifying non-adult attention-deficit/hyperactivity disorder individuals using a stacked machine learning algorithm using administrative data population registers in a universal healthcare system. JCPP Advances, 2023, 4(1), e12193. Disponible en: <https://acamh.onlinelibrary.wiley.com/doi/full/10.1002/jcv2.12193>. Fecha de acceso: 17 oct. 2023. DOI: 10.1002/jcv2.12193
Número de l'acord de la subvenció
info:eu-repo/grantAgreement/ES/3PE/PID2021-124067OB-C21
Nota
T.M. and D.R. gratefully acknowledge the financial support from the Ministry of Science and Innovation grant PID2021‐124067OB‐C21.
Aquest element apareix en la col·lecció o col·leccions següent(s)
Drets
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Excepte que s'indiqui una altra cosa, la llicència de l'ítem es descriu com https://creativecommons.org/licenses/by/4.0/


