Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation
Author
Publication date
2016ISSN
0928-4931
Abstract
Bacterial infection in dental implants along with osseointegration failure usually leads to loss of the device. Bioactive molecules with antibacterial properties can be attached to titanium surfaces with anchoring molecules such as silanes, preventing biofilm formation and improving osseointegration. Properties of silanes as molecular binders have been thoroughly studied, but research on the biological effects of these coatings is scarce. The aim of the present study was to determine the in vitro cell response and antibacterial effects of triethoxysilypropyl succinic anhydride (TESPSA) silane anchored on titanium surfaces. X-ray photoelectron spectroscopy confirmed a successful silanization. The silanized surfaces showed no cytotoxic effects. Gene expression analyses of Sarcoma Osteogenic (SaOS-2) osteoblast-like cells cultured on TESPSA silanized surfaces reported a remarkable increase of biochemical markers related to induction of osteoblastic cell differentiation. A manifest decrease of bacterial adhesion and biofilm formation at early stages was observed on treated substrates, while favoring cell adhesion and spreading in bacteria–cell co-cultures. Surfaces treated with TESPSA could enhance a biological sealing on implant surfaces against bacteria colonization of underlying tissues. Furthermore, it can be an effective anchoring platform of biomolecules on titanium surfaces with improved osteoblastic differentiation and antibacterial properties.
Document Type
Article
Document version
Accepted version
Language
English
Subject (CDU)
616.3 - Pathology of the digestive system. Complaints of the alimentary canal
Keywords
Pages
29
Publisher
Elsevier
Collection
59;
Is part of
Materials Science and Engineering: C
Recommended citation
Godoy Gallardo, Maria; Guillem Martí, Jordi; Sevilla Sánchez, Pablo [et al.]. Anhydride-functional silane immobilized onto titanium surfaces induces osteoblast cell differentiation and reduces bacterial adhesion and biofilm formation. Materials Science and Engineering: C, 2016, 59, p. 524-532. Disponible en: <https://www.sciencedirect.com/science/article/abs/pii/S0928493115304823?via%3Dihub>. Fecha de acceso: 15 nov. 2021. DOI: 10.1016/j.msec.2015.10.051
Grant agreement number
info:eu-repo/grantAgreement/ES/MINECO/MAT2009-12547
info:eu-repo/grantAgreement/ES/MINECO/MAT2012-30706
Note
This work was supported by Fundación Ramón Areces and the Spanish Government (MINECO) under Grants MAT2009-12547 and MAT2012-30706, both co-funded by the European Union through European Regional Development Funds. M. Godoy-Gallardo and F.J. Gil report that they have a patent (ES patent P201 331756) on the TESPSA silane application.
This item appears in the following Collection(s)
- Odontologia [345]
Rights
© 2015 Elsevier B.V. All rights reserved.

