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Abstract: The aim of the present study was to describe and determine changes in the superelastic
properties of NiTi archwires after clinical use and sterilization. Ten archwires from five different
manufacturers (GAC, 3M, ODS, GC, FOR) were cut into two segments and evaluated using a three-
point bending test in accordance with ISO 14841:2006. The center of each segment was deflected
to 3.1 mm and then unloaded to 0 N to obtain a load–deflection curve. Deflection at the end of the
plateau and forces at 3, 2, 1 and 0.5 mm on the unloading curve were recorded. Plateau slopes were
calculated at 2, 1 and 0.5 mm of deflection. Data obtained were statistically analyzed to determine
differences (p < 0.001). Results showed that the degree of superelasticity and exerted forces differed
significantly among brand groups. After three months of clinical use, FOR released a greater force for
a longer activation period. GC, EURO and FOR archwires seemed to lose their mechanical properties.
GC wires released more force than other brand wires after clinical use. Regarding superelasticity after
sterilization, GAC, 3M and FOR wires recovered their properties, while EURO archwires lost more.

Keywords: NiTi; superelasticity; sterilization; mechanical properties

1. Introduction

Tooth movements and changes in orthodontic appliances result from force systems
and tissue responses to them. An ideal force produces tooth movement without damaging
teeth or tissues. Factors including tooth size and type of movement need to be considered
when applying force during orthodontic treatment. However, it is difficult to determine
an ideal force [1,2]. Hence, a sound knowledge of the mechanical behavior of orthodontic
archwires is required to select the most suitable size and material to achieve optimal and
predictable treatment results [3]

Orthodontic treatment begins with leveling and aligning the teeth with nickel–titanium
(NiTi) archwires, which deliver light and continuous forces for efficient tooth
movement [4–6]. NiTi archwires, introduced by Andreasen and Hillman in the 1970s [4,5],
deliver an optimal constant force over an extended range of deflection in order to enable a
smooth transformation into and from a martensitic phase [1,7,8]. Their behavior is charac-
terized by a more or less constant curve of deflection load and by a more or less constant
release of the force, depending on the manufacturers. This phase transformation may occur
through variations in temperature and stress changes in the oral cavity [1,9].

The shape memory of Superelastic NiTi archwires is incorporated in the production
phases by establishing a shape at approximately 482 ◦C [1]. It has been suggested that
nickel–titanium alloys become ductile and may be plastically deformed at temperatures
below the transition temperature range (TTR). Another property of NiTi archwires is their
superelasticity or pseudoelasticity, which is produced by reversible phase transformation
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from the body-centered cubic structure (austenitic) to a monoclinic structure (martensitic).
This phase transformation is the effect of the stress application during activation and deacti-
vation [6]. During transformation, the stress remains stable even as it increases, preventing
undesirable side effects such as hyalinization, pain, and root resorption [10,11]. As shown
in the load/deflection diagram (Figure 1), superelasticity is characterized by the plateau,
indicating that the force exerted is relatively constant in the range of tooth movement.
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The first NiTi archwire wires in orthodontic treatments are usually used for at least
two or three months, during which they undergo mechanical stress and chemical exposure
in the patient’s mouth. Furthermore, studies indicate that 52% of clinicians recycle these
wires [12]. During sterilization, recycled wires endure further stress [3,12,13]. Hence,
repeated exposure and sterilization may induce changes in the mechanical properties
and surface conditions of NiTi archwires that may not be clinically adequate for tooth
movement [12].

It should be noted that the properties of NiTi orthodontic wires may depend on various
aspects; chief among them are consistent chemical composition [14,15], grain size [14,16],
mechanical and thermal cycling [17], residual stresses [18], and whether the surface treat-
ment of wires improves friction coefficients. In addition, possible heat treatments of wires
for flexibility, loops, or soldering to obtain different forces in the molar or canine areas
produce substantial changes in the transformation temperatures and, therefore, in the
superelastic curves [18,19]. Numerous studies have demonstrated that changes in tem-
perature cause precipitation of precipitates rich in nickel or titanium, depending on the
chemical composition of the wire, lead to a loss of the superelastic properties, rendering
the wires useless for orthodontic therapy [20–22]. There appears to be limited evidence on
the intraoral aging sequence and associated changes in NiTi archwire properties. Some
studies have reported that heat sterilization has detrimental effects on the elastic and tensile
properties of these wires [23], but more studies tend to focus on corrosion resistance and
other effects on mechanotherapy. However, few reports in the last years on changes in
superelastic properties have been found [24,25].

The aim of the present study was to determine changes in the superelastic properties
of NiTi archwires after clinical use and sterilization and identify possible differences among
the different archwire brands.
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2. Materials and Methods

The sample comprised preformed NiTi wires from five manufacturers (GC Orthodon-
tics Europe GmbH, Breckerfeld, Germany; Unitek, Monrovia, CA, USA; Ods, Kisdorf,
Germany; Forestadent, Pforzheim, Germany; and GAC, Grenoble, France) commercialized
as superelastic with a 0.016-inch round section, as shown in Table 1. The archwires were
randomly distributed among orthodontic patients of the clinic at Universitat Internacional
de Catalunya (UIC Barcelona, Barcelona, Spain). The study was approved by the Clinical
Research Ethics Committee of the Universitat Internacional de Catalunya (ORT-ELM-2019-
01). The sample was divided into three groups of archwires per brand at the following
time points: 10 archwires before clinical use (T0); 10 after three months in the mouth (T1);
and 10 after three months in the mouth and sterilization (T2). Each archwire was cut into
two samples to test 20 segments in each group. Each of the five brands was tested 60 times,
totaling 300 specimens.

Table 1. Archwire tested groups distributed by brands and batches.

Archwire
Group Archwire Diameter Manufacturer Batch

GC-0
GC-1
GC-2

Nickel Titanium 0.016 inch GC Orthodontics Europe GmbH, Germany 195415

3M-0
3M-1
3M-2

Nitinol® SuperElastic 0.016 inch Unitek, Monrovia, CA, USA IE6ZG

EURO-0
EURO-1
EURO-2

Euro Ni-Ti Opto TH Plus 0.016 inch ODS, Kisdorf, Germany 2001898
2001930

FOR-0
FOR-1
FOR-2

Titanol® Superelastic 0.016 inch Forestadent, Pforzheim, Germany 48055331
46055329

GAC-0
GAC-1
GAC-2

Sentalloy® superelastic 0.016 inch GAC, Grenoble, France I760004
C760001

Accepting an alpha risk of 0.05 and a beta risk of 0.2 in a two-sided test, twenty
specimens per brand were necessary to recognize a difference greater than or equal to
0.05 units as statistically significant. The standard deviation was assumed to be 0.309, as in
previous studies [1,7].

The three-point elastic bending test was used to assess the mechanical properties
using a 10 mm beam length [25]. The distance between the penetrator point (Figure 2
(1a)) and the two supporting points of each archwire was identical (Figure 2 (2a)). The
radius of these two points measured 0.10 ± 0.05 mm, in accordance with the ISO 14841:2006
(Figure 2) [25,26].

Each wire segment was tested once using the TestXpert III (Z005 Test Control II,
Universal Testing Machine, Zwick Roell, Kennesaw, GA, USA). Sterilized samples were
carried out with Standard Autoclave Sterilization (Matachana Series S1000 Sterilizers,
Matachana Group S.A, Selmsdorf, Germany) at 134 ◦C and a pressure of 15.0 kPa for
20 min. The middle portion of the wire was deflected at a crosshead speed of 7.5 mm/min
under the pressure of the penetrator point. The middle portion of each segment was loaded
to 3.1 mm of deflection, similar to what is usually produced in clinical situations when
teeth are levelled and aligned. The wire segments were unloaded at the same crosshead
speed until the released force reached zero. Subsequently, the unloading curve and the
superelasticity of each wire segment were evaluated using the nine following parameters:
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• Force level delivered in Newtons (N) with deflection at 3.0 mm, 2.0 mm, 1.0 mm,
0.5 mm (Fdef-3 mm, Fdef-2 mm, Fdef-1 mm, Fdef-0.5 mm, respectively).

• Deflection at the end of plateau in mm (Sp).
• Minimum force level at the end of superelastic plateau in N (Fp).
• Plateau slopes: between 0.5 mm and Sp (Slope-0.5 mm), between 1 mm and Sp (Slope-1 mm),

and between 2 mm and Sp (Slope-2 mm) of deflection expressed in N/mm.
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The plateau slope value was obtained using the following equations. The equation
A. Slope − 0.5mm (N/g) = (Fdef−0.5mm)−Fp

(0.5−Sp) shows the slope at 0.5 mm of deactivation;

the equation B. Slope − 1mm (N/g) = (Fdef−1mm)−Fp
(1−Sp) indicates the slope at 1 mm of

deactivation; finally, the equation C. Slope − 2mm (N/g) = (Fdef−2mm)−Fp
(2−Sp) shows the

slope at 1 mm of deactivation measuring the degree of plateau flatness; thus, the closer the
slope is to zero, the more constant the force. Figure 1 shows the loading and unloading
curve of the archwire segments and all the evaluated parameters.

The results were analyzed with R software version 4.2.1 (1989, 1991 Free Software
Foundation, Inc. Temple Place, Boston, MA, USA). The variables of interest were first
described by mean and standard deviation. Normality was tested with the Shapiro–Wilk
test. The groups were compared with ANOVA. All tests were considered significant for a
p-value of less than 0.05. Statistically significant differences were set at a p-value < 0.001.
Further, clustering analysis was performed on each group in order to know its behavior.
That means all the performances in cluster A have similar behavior, the same as those in
clusters B, C, and D.

The microstructures of the NiTi studied were observed using an SEM (JEOL 1200 EXII
Microscopy Tokyo, Japan) equipped with a link LZ5 EDS (Jeol, Tokyo, Japan), which was
used for determining the chemical composition. Original samples were etched with HF
35% v/v for 15 s in order to reveal the microstructure. The same acid etching was realized
for the samples with stabilized martensite. An equiatomic NiTi was heat-treated at 550 ◦C
for 60 min, in this case, the samples were not etched.

3. Results

Graphs were made showing the behavior of each wire at the three time points
(Figures 3–5). Note the comparable shape and an apparent superelastic plateau, albeit an
apparent discrepancy in the loading and unloading curve.
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Figure 3. Diagram of the first specimen from each manufacturer obtained from as received archwires
before clinical use (T0). Dark blue: GC/Blue: 3M/Yellow: EURO/Grey: FOR/Orange: GAC.
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Figure 4. Diagram of the first specimen from each manufacturer obtained from archwires after three
months of clinical use (T1). Dark blue: GC/Blue: 3M/Yellow: EURO/Grey: FOR/Orange: GAC.
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Figure 5. Diagram of the first specimen from each manufacturer obtained from archwires after
sterilization (T2). Dark blue: GC/Blue: 3M/Yellow: EURO/Grey: FOR/Orange: GAC.

Tables 2 and 3 show the Plateau Slopes at 0.5 mm, 1 mm, and 2 mm of deactivation
and the mean delivered force (Fdef) at 3, 2, 1, and 0.5 mm deflection, respectively. The
variations in properties of wire segments before clinical use (T0) and after three months (T1)
were compared; changes among T1, T2, and T0 were also analyzed. Additionally, cluster
distribution is shown in order to notice the different conditions of each group.
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Table 2. Mean values of Plateau 0.5 mm, Plateau 1 mm, and Plateau 2 mm measured for T0, T1, and
T2 of each manufacturer. ANOVA Test. p-value 95% and clustering analysis of each group comparing
T0–T1, T1–T2, and T0–T2. (NS Non-significant; ** p < 0.01, *** p < 0.001).

Groups T0 ±
SD Cluster T1 ±

SD Cluster T2 ±
SD Cluster T0–T1 Cluster T1–T2 Cluster T0–T2 Cluster

Plateau 0.5 mm (N)

GAC −1.92
(0.07) a −0.50

(0.17) a −0.56
(0.19) a

−0.15
(0.14)

**
c

−0.06
(0.08)

***
b

−0.21
(0.16)

**
c

3M −2.23
(0.13) c −1.56

(0.11) b −1.66
(0.11) b

0.36
(0.13)

***
a

−0.10
(0.17)

***
b

0.26
(0.14)

***
b

ODS −0.35
(0.18) a −0.47

(0.07) a −0.59
(0.07) a

−0.18
(0.09)

***
c, d

−0.12
(0.08)

***
b

−0.30
(0.12)

***
c,d

GC −1.68
(0.08) b −1.97

(0.14) c −2.07
(0.1) c

−0.29
(0.17)

***
d

−0.10
(0.17)

***
b

−0.39
(0.11)

***
d

FOR −0.29
(0.08) d −2.22

(0.14) d −0.59
(0.07) a

0.01
(0.16)
NS

b
1.63

(0.16)
***

a
1.64

(0.15)
***

a

Plateau 1 mm (N)

GAC −0.17
(0.09) a −0.36

(0.1) a −0.32
(0.10) a

−0.19
(0.09)

***
d

0.04
(0.06)

***
b

−0.15
(0.09)

***
c

3M −0.97
(0.02) e −0.81

(0.06) b −0.87
(0.06) c

0.17
(0.05)

***
a

−0.07
(0.09)

***
c

0.10
(0.07)

***
b

ODS −0.24
(0.06) b −0.34

(0.04) a −0.41
(0.04) b

−0.1
(0.06)

***
c

−0.07
(0.06)

***
c

−0.17
(0.08)

***
c

GC −0.57
(0.04) c −0.9

(0.07) c −0.93
(0.03) d

−0.33
(0.07)

***
e

−0.04
(0.07)

***
c

−0.37
(0.05)

***
d

FOR −0.86
(0.05) d −0.88

(0.07) c −0.41
(0.04) b

−0.02
(0.06)
NS

b
0.47

(0.08)
***

a
0.45

(0.07)
***

a

Plateau 2 mm (N)

GAC 0.13
(0.02) a 0.16

(0.026) a −0.06
(0.09) a

0.03
(0.02)

**
b

−0.22
(0.08)

**
d

−0.20
(0.08)

**
c

3M −0.30
(0.03) e −0.13

(0.16) b −0.31
(0.09) c

0.17
(0.16)

***
a

−0.18
(0.14)

***
c,d

−0.01
(0.10)
NS

a,b

ODS −0.18
(0.05) c −0.13

(0.04) b −0.24
(0.04) b

0.05
(0.06)

**
b

−0.11
(0.06)

***
c

−0.07
(0.07)

***
b

GC −0.02
(0.04) b −0.28

(0.11) c −0.29
(0.06) b,c

−0.27
(0.11)

***
d

−0.01
(0.11)

***
b

−0.28
(0.08)

***
d

FOR −0.26
(0.04) d −0.36

(0.05) c −0.24
(0.04) c

−0.10
(0.06)

***
c

0.12
(0.06)

***
a

0.02
(0.05)
NS

a
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Table 3. Mean values of the results of the Fdef N (force delivered in Newtons) at 0.5 mm, 1 mm, and
2 mm measured for T0, T1, and T2 for each brand. ANOVA Test. p-value 95% and clustering analysis
of each group at T0–T1, T1–T2, and T0–T2. (NS Non-significant; * p < 0.05; ** p < 0.01, *** p < 0.001).

GROUPS T0 ±
SD Cluster T1 ±

SD Cluster T2 ±
SD Cluster T0–T1 Cluster T1–T2 Cluster T0–T2 Cluster

Force deflection 0.5 mm (N)

GAC 0.15
(0.10) c,d 0.11

(0.09) d 0.21
(0.08) b

−0.04
(0.08)
NS

a
0.10

(0.04)
***

a
0.15

(0.10)
***

c,d

3M 0.19
(0.03) c 0.20

(0.05) c 0.21
(0.04) b

0.02
(0.07)
NS

a
0.01

(0.05)
***

c
0.19

(0.03)
NS

c

ODS 0.10
(0.04) d 0.08

(0.04) d 0.17
(0.03) b

−0.01
(0.05)
NS

a
0.09

(0.04)
***

a,b
0.10

(0.04)
***

d

GC 0.91
(0.03) a 0.39

(0.04) b 0.45
(0.05) a

−0.52
(0.05)

***
b

0.06
(0.03)

***
b

0.91
(0.03)

***
a

FOR 0.52
(0.08) b 0.50

(0.06) a 0.17
(0.03) b

−0.02
(0.09)
NS

a
−0.33
(0.08)

***
d

0.52
(0.08)

***
b

Force deflection 1 mm (N)

GAC 0.19
(0.09) d 0.15

(0.08) d 0.24
(0.08) c

−0.04
(0.07)
NS

b
0.10

(0.04)
***

a
0.19

(0.09)
**

d

3M 0.57
(0.04) c 0.51

(0.07) c 0.52
(0.07) b −0.06

(0.08) * b
0.01

(0.07)
***

b 0.57
(0.04) * c

ODS 0.07
(0.03) e 0.12

(0.05) b 0.18
(0.03) d

0.05
(0.05)

**
a

0.06
(0.04)

***
a

0.07
(0.03)

***
e

GC 1.03
(0.04) a 0.75

(0.06) d 0.80
(0.05) a

−0.29
(0.09)

***
c

0.05
(0.07)

***
a,b

1.03
(0.04)

***
a

FOR 0.95
(0.03) b 0.93

(0.05) a 0.18
(0.03) d −0.03

(0.07) * b
−0.75
(0.07)

***
c

0.95
(0.03)

***
b

Force deflection 2 mm (N)

GAC 0.38
(0.06) c 0.35

(0.06) b 0.40
(0.06) c

−0.02
(0.05)
NS

b,c
0.05

(0.04)
***

a
0.38

(0.06)
NS

c

3M 0.97
(0.02) b 0.97

(0.16) a 0.84
(0.09) b

0.01
(0.17)
NS

b
−0.13
(0.13)

***
c

0.97
(0.02)

***
b

ODS 0.10
(0.03) d 0.28

(0.04) b 0.26
(0.02) d

0.18
(0.05)

***
a

−0.02
(0.04)

***
b

0.10
(0.03)

***
d

GC 1.09
(0.04) a 1.00

(0.07) a 1.04
(0.05) a

−0.09
(0.09)

***
c

0.04
(0.09)

***
a,b

1.09
(0.04)
NS

a

FOR 1.09
(0.03) a 0.99

(0.06) a 0.26
(0.02) d

−0.09
(0.07)

***
c

−0.73
(0.07)

***
d

1.09
(0.03)

***
a

4. Discussion

The present study has a twofold aim: to analyze the superelastic properties of NiTi
wires at three time points and to determine the changes in the mechanical properties after
recycling the wires used in patients and non-in vitro simulation processes (thermocycling,
cyclic loading). There appear to be limited clinical studies and a notorious inability of
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in vitro research to simulate in vivo conditions [27–29] since the multiplicity of factors
present in the oral cavity cannot be simulated [27,30–32]. Due to its reproducibility, the
three-point bending test is the standard method for testing and comparing flexural prop-
erties [3,5,33,34]. However, studies show wide variability in this method, indicating no
established consensus about how testing should be undertaken [3,5,9,35]. Currently, this
bending test is regulated by two standards: the European National Standard and the Amer-
ican National Standard (ANSI/ADA), which are identical to ISO 15841:2006 [23,26,36].
Thus, it is recommended to follow the same standard procedure with equally adjusted pa-
rameters to accurately compare archwire properties. Archwire manufacturers are required
to indicate the properties of their product according to the three-point bending test, as set
out in the European National Standard [26,37]. The testing procedure used in the present
study was conducted according to ISO 15841:2006 [26]. However, most previous studies
have not followed these criteria [6,13,33,38–41]. As a result, only two articles have been
found in which testing was performed according to ISO 15841:2006 [15,35].

Nine parameters were studied for the three groups of NiTi archwires supplied by
five brands. The plateau slopes calculated to determine the superelastic properties of
each wire revealed great variability (Figures 3–5) [5,15]. The statistical differences among
manufacturers for the means of each variable were measured at T0 (before clinical use).
The GC archwires exerted the highest forces at all deflection points, although the FOR and
3M archwires behaved similarly. Thus, at T1 (after three months of use in the mouth), the
FOR group exerted the highest forces at all deflection points, except at 2 mm, where GC
and 3M wires performed similarly to the FOR. At T2 (after sterilizing the used archwires),
the GC group exerted the highest force at three deflection points, except at 3 mm, where
the 3M archwires behaved identically to the GC. Despite the differences observed at T0,
all the archwires exerted almost the same force after three months of use (Table 2). Some
authors point out that force increases as crowding is resolved but then recovers baseline
properties once teeth are aligned [23,33].

Plateau slope values show the degree of superelasticity. If these values remain stable
over time, superelastic properties remain stable. A constant force over a wide range allows
the orthodontist to use the archwire even on teeth far from their correct position in the
arches. The present study found significant differences in plateau slope values across
the studied groups (Table 3). Regarding lower deformations (0.5–1 mm), GAC and 3M
archwires did not remain stable after three months, lowering values and becoming more
superelastic, after which sterilization plateau values remained constant. As for lower
deformations, EURO, GC, and FOR at the plateau increase, making the archwires gradually
lose their superelasticity after three months in the oral cavity. After sterilization, the plateau
slope values also increased, compromising superelasticity. In contrast, the FOR wires
showed no decrease in plateau values, thus recovering superelastic properties [9].

Despite these differences among the archwire brands at the different time points, we
found that all the groups released almost the same force as before clinical use at all deflection
points (Table 3). This may be due to the fact that as crowding resolves, as observed in other
studies [7,9], the force initially increases but subsequently recovers its baseline properties.
These results suggest that the wire is subjected to continuous deformations due to crowding.
Once crowding is resolved, the archwire stops receiving continuous activation forces as it
recovers its initial properties [9].

The superelastic properties observed after months of treatment can be attributed to the
presence of martensite that is stabilized by mechanical stress. When the clinician inserts an
orthodontic wire, the wire is in the initial phase known as the austenitic phase. However,
due to the tension caused by the misalignment of the teeth, the wire exerts a corrective
force to realign the dental position. This force exerted by the wire on the teeth results from
a martensitic transformation induced by the stress in the region of maximum tension [42].

The martensitic phase induced by the tension is not stable at the oral cavity tem-
perature of 37 ◦C. Consequently, under mechanical tensions, it tends to revert back to
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the original phase and restore the initial arch shape, which is considered optimal for
each patient.

These transformations are known as thermoelastic martensitic transformations, as
they do not result in plastic deformations like those observed in steel. Instead, they allow
for wires with superelastic behavior that can withstand deformations exceeding 20%.
However, when the wires remain in service for an extended period or experience high
loads, dislocations occur that anchor the martensite plates. These plates, once stabilized, no
longer return to their initial phase at 37 ◦C. To unanchor these plates, significantly higher
temperatures are required, typically ranging from 400–500 ◦C, as indicated by several
authors. The stabilization of the martensite inhibits superelasticity and diminishes the
effectiveness of the orthodontic wire, a phenomenon referred to as NiTi wire amnesia.

Figure 6A shows self-accommodating martensite plates resulting from wire cooling
and at higher magnification, while Figure 6B shows martensitic plates with various orienta-
tions. As the temperature does not have a vectorial orientation, martensite plates form in
the most favorable orientations. This is called martensitic self-accommodation. However,
Figure 6C illustrates martensite plates induced by mechanical stress, revealing that these
stress-induced plates align with the direction of mechanical stress. Unlike temperature,
which is not a vectorial property, stress is a vectorial parameter, thereby influencing the
direction of the plates. Figure 6C shows the martensitic plates that have stabilized within a
wire, which was initially austenitic at room temperature. However, after a stress period
of 3 months, it is evident that a part of the martensitic plates did not transform back to
the austenitic phase. The stabilized martensite partially or totally loses the superelasticity
of the orthodontic wire. In order to retransform stabilization to austenite and recover the
superelasticity of the austenite, the wire must be subjected to a heat treatment of approxi-
mately 400 ◦C for 20 min. Care must be taken not to increase the temperature and treatment
times as this can lead to the appearance of titanium-rich precipitates in the austenitic matrix
which cause the superelasticity of the wire to be lost (Figure 6D).
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Figure 6. (A) Martensitic microstructure in equiatomic superelastic NiTi archwire. (B) Microstructure
(A) at higher magnification. (C) Stabilized martensitic plates induced by stress. (D) Ti-rich precipitates
on the austenitic matrix. In this case, the NiTi was treated at 550 ◦C for 60 min.

Before starting orthodontic treatment, it is crucial to consider the changes in mechanical
properties of each brand, in particular superelasticity and delivered forces, which affect
crowding resolution and periodontal conditions. It is also relevant that some archwires
recover their initial properties after sterilization, allowing them to be reused.
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5. Conclusions

1. Significant differences in exerted forces, both during three months of activation (T1)
and after sterilization (T2), were found among the brands.

2. GC, EURO, and FOR appeared to lose their superelastic properties during three
months of clinical use (T1).

3. As for lower deformations (<2 mm), GAC, 3M, and FOR wires recovered their proper-
ties after sterilization (T2), while EURO archwires appeared to lose their superelasticity.

4. Superelastic properties and released forces were found to differ significantly among
all groups studied (T0, T1, and T2).
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