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Rationally designed azobenzene photoswitches for
efficient two-photon neuronal excitation
Gisela Cabré1, Aida Garrido-Charles2, Miquel Moreno1, Miquel Bosch2, Montserrat Porta-de-la-Riva3,

Michael Krieg3, Marta Gascón-Moya1, Núria Camarero2, Ricard Gelabert1, José M. Lluch 1, Félix Busqué1,

Jordi Hernando1, Pau Gorostiza 2,4,5 & Ramon Alibés 1

Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches

with near-infrared light has been recently demonstrated, but their practical use in neuronal

tissue to photostimulate individual neurons with three-dimensional precision has been

hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photo-

isomerization compared to one-photon excitation, and secondly, the short cis state lifetime of

the two-photon responsive azo switches. Here we report the rational design based on the-

oretical calculations and the synthesis of azobenzene photoswitches endowed with both high

two-photon absorption cross section and slow thermal back-isomerization. These com-

pounds provide optimized and sustained two-photon neuronal stimulation both in light-

scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse

intensities that are comparable to those achieved under one-photon excitation. This finding

opens the way to use both genetically targeted and pharmacologically selective azobenzene

photoswitches to dissect intact neuronal circuits in three dimensions.
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Azobenzene photoswitches1 are at the core of most recently
developed strategies to manipulate biological functions
with light2–4, which among other systems, enable remote

control of cell receptors and channels5–7. Toward these applica-
tions, much effort is being devoted to optimize the light-induced
response of azobenzenes (e.g. long-wavelength operation8–13 or
modulation of cis state thermal stability9,13).

A crucial aspect that must ineluctably be addressed to unleash
the full potential of azobenzene photoswitches is multiphoton
excitation with near-infrared radiation (NIR, ~700–1400 nm)14,15,
which enables three-dimensional (3D) sub-micrometric resolu-
tion16, deeper penetration into tissue with lower photodamage17,
and patterned illumination18,19. However, in contrast to the pro-
gress made with optogenetics20,21, efficient multiphoton operation
of azobenzenes still remains a challenge, mainly due to the low
two-photon (2P) absorption cross sections (σ2) of most of these
compounds under NIR light excitation22,23.

This is the case of MAG, the first-generation azobenzene-based
photoswitchable tethered ligand (PTL) used for the preparation of
light-gated glutamate receptors (LiGluR, Fig. 1a and Supple-
mentary Fig. 1)24,25. Upon conjugation to a cysteine residue
genetically engineered in kainate-type ionotropic glutamate
receptor GluK2,MAG trans-cis photoisomerization allows optical
control of ion channel opening and closing in LiGluR24,25, a
behavior profusely applied to the study of neurotransmission
in vitro and in vivo26–30. While effective light-gating of LiGluR is
achieved via regular one-photon (1P) absorption of ultraviolet-
visible (UV-vis) radiation24–30, multiphoton operation with NIR
light is preferred to stimulate selected cells located deep into
tissues at high spatiotemporal resolution31,32. Indeed, 2P
switching at ~750–900 nm was recently demonstrated for LiGluR
after functionalization with MAG33 and its analogous ligand
MAG0 (Supplementary Fig. 1)34; however, rather limited
responses were obtained owing to the very low 2P absorption
cross section of the symmetrically substituted azobenzene core of
these compounds (σ2= 10 GM for trans-MAG0 at 820 nm34,
Fig. 1b).

Two different strategies have been explored to enhance the 2P
activity of MAG-type PTLs for multiphoton LiGluR operation.
On one hand, sensitized photoswitching with NIR light was
attempted by tethering a 2P-absorbing antenna to the ligand33,35,
which however compromised its biological activity due to
decreased solubility in water, low conjugation efficiency to
cysteine-tagged GluK2, and/or reduced affinity toward the
receptor-binding site33,35. On the other hand, electronically
asymmetric azobenzenes were proposed to intrinsically increase
their 2P absorption cross sections22,23,36–38. For MAG-type PTLs
and other related compounds, this concept was examined by
introducing a strong electron-donating amino group in the fourth
position of their azobenzene core (e.g. in MAG2p and MAG460,
Fig. 1b and Supplementary Fig. 1)33,34,39. A notable increase in 2P
absorption was observed in these cases (σ2= 80 GM for trans-
MAG460 at 850 nm34), though at the expense of dramatically
decreasing the thermal stability of the cis isomer of the photo-
switch down to the sub-second timescale. As such, this prevented
large photoresponses to be obtained for the 2P operation of
LiGluR with MAG2p and MAG460, since rapid thermal relaxation
of the cis state of the switch impeded building up a large popu-
lation of the open state of the ion channel33,34.

Here we report the computationally based rational design and
preparation of MAG-type photoswitches displaying both high 2P
biological activity with NIR light and large cis isomer thermal
lifetime (τcis). Our approach toward this goal relies on the accu-
rate selection of the substitution pattern of the azoaromatic core
of the system, which should allow for electronic asymmetry (i.e.
enhanced σ2 in the NIR region) without compromising the

thermal stability of its cis state. Importantly, this strategy could be
expanded to other azobenzene-based photoswitches for tailoring
their response under multiphoton excitation.

Results
Design and synthesis of high 2P-responsive MAG-type PTLs.
Although the most efficient manner to increase the 2P absorption
cross section of azobenzenes lies in the push-pull substitution of
their aromatic core22,23, the introduction of strong mesomeric
electron-donating (EDG), and/or electron-withdrawing (EWG)
groups concomitantly accelerates their cis→ trans thermal back-
isomerization in the dark (e.g. with EDG= 4-NR2 and EWG= 4-
NO2)1. A compromise must therefore be met to obtain azo
derivatives with both large σ2 and τcis values. In order to rationally
devise these compounds, we computed the 2P absorption cross
section and the cis state thermal stability for a series of model
azoaromatic photochromes using the time-dependent density
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Fig. 1 Strategy toward optimized azobenzene photoswitches for the two-
photon (2P) excitation of light-gated glutamate receptors (LiGluR).
a Operating mode of MAG-type photoswitchable tethered ligands (PTLs)
on LiGluR, which are composed of three covalently tethered units: a
glutamate ligand, an azobenzene core, and a maleimide group that binds to
a cysteine residue genetically engineered in the receptor. Ultraviolet-visible
(one-photon; 1P) or near-infrared (2P) light excitation induces glutamate
recognition and channel opening via trans→ cis isomerization, which results
in ion flow across the membrane. This process is reverted by illumination
with visible light excitation (1P) or thermal back-isomerization of the cis
state of the switch. b Structures of the azobenzene cores of MAG, MAG0,
MAG2P, and MAG460 PTLs proposed for the photoswitching of LiGluR
under 1P and 2P excitation conditions. c Structures of PTLs MAGslow

2P and
MAGslow

2P�F
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functional theory (TDDFT, Table 1, Supplementary Fig. 2, and
Supplementary Tables 1 and 2). The azobenzene cores of
MAG/MAG0 (AzoMAG, R= R′= 4-NHCOMe) and MAG2P/
MAG460 (AzoMAG2p, R= 4-NHCOMe, R′= 4′-NMe2) were
taken as reference systems in these calculations, while several
alternative azo compounds (Azo1–Azo3) were explored on the
basis of two main design principles: (a) a push-pull substitution
pattern to enhance σ2 with respect to MAG and MAG0; and (b)
the use of weak mesomeric EDG (R= 4-NHCOMe) and EWG
(R′= 4′-CONH2) as well as a strong inductive EWG (R′= 2′-F
and 2′,4′-F) to increase τcis relative to MAG2P and MAG460. For
comparison purposes, two other model cases were considered: (a)
an azo group alternatively bearing a strong mesomeric EWG
substituent (Azo4, R′= 2′-NO2); and (b) an azo core with strong
inductive EWGs on both aryl rings (Azo5, R= R′= 2,4-F), a
substitution pattern that enables long-wavelength 1P isomeriza-
tion of azobenzenes9 and was recently reported to allow for 2P
operation with NIR light in biological samples40.

As shown in Table 1 and Supplementary Tables 1 and 2, null 2P
absorption was predicted for both the S0→ S1 and S0→ S2
transitions of trans-AzoMAG, which is in good agreement with the
behavior expected for purely centrosymmetric azobenzenes22,23

and the minimal σ2,trans value experimentally determined for
MAG0

34. By contrast, a major σ2 value was computed for the
S0→ S2 band of electronically asymmetric trans-AzoMAG2p,
which is consistent with that measured for trans-MAG460

34.
Interestingly, larger 2P absorption cross sections were calculated
for model compounds trans-Azo1–Azo4, which showed a clear

dependence on the electronic asymmetry of their azo core:
selective introduction of o-fluoro and o-nitro EWGs in one of the
azobenzene aryl rings of trans-Azo2–Azo4 led to a noteworthy
increase in σ2 with respect to o-unsubstituted trans-Azo1. On the
contrary, electronic symmetrization of the azobenzene chromo-
phore in trans-Azo5 bearing four o-fluoro substituents inhibited
this effect and even resulted in a slight decrease of the 2P
absorption cross section with respect to trans-AzoMAG2p. More
importantly, the enhancement in σ2,trans observed for Azo1–Azo3
was not found to detrimentally affect the stability of their cis
isomer and rather large τcis values were predicted for these
compounds in water, in contrast to the behavior observed for
AzoMAG2p in cis-MAG2p/cis-MAG460 and cis-Azo4 bearing a
nitro group. This clearly demonstrates the advantages of designing
electronically asymmetric azoaromatic photochromes with weak
mesomeric EDG and EWG as well as strong inductive EWG,
which emerge as ideal candidates for the preparation of
azobenzene-based switches with high 2P activity for biological
applications.

Because of the optimal σ2,trans and τcis values computed for
Azo1–Azo3, the 2P absorption properties of the cis isomers of
these compounds were theoretically predicted (Supplementary
Tables 1 and 2), since they also affect the efficiency of the
photoisomerization process of azobenzenes. On one hand, larger
σ2,trans/σ2,cis ratios were calculated for Azo1–Azo3 with respect to
AzoMAG and AzoMAG2p for their 2P-allowed S0→ S2 transition.
On the other hand, different excitation energies were found for
both isomers of Azo1–Azo3 as to favor selective 2P excitation of
their trans states, although this behavior was observed to decrease
with the number of fluorine substituents introduced. This, in
combination with their high σ2,trans and τcis values and assuming
similar trans-cis and cis-trans photoisomerization quantum
yields34, should result in a large 2P activity for trans-Azo1–
Azo3 in comparison to the trans-azoaromatic cores of
MAG/MAG0 and MAG2P/MAG460.

Encouraged by our theoretical results on trans-Azo1–Azo3,
two MAG-type PTLs were designed (MAGslow

2P and MAGslow
2P�F

,
Fig. 1c). To favor synthetic accessibility, selective excitation of the
trans isomer, as well as structural resemblance with MAG and, as
such, replication of its light-gated control of LiGluR, we: (a) took
the azo chromophores of Azo1 and Azo2 as models for the
preparation of MAGslow

2P and MAGslow
2P�F

, and (b) employed similar
linkers to those used in MAG to tether the maleimide and
glutamate units to the azobenzene core.

The preparation of MAGslow
2P (R=H) and MAGslow

2P�F
(R= F)

was achieved via a linear sequence where glutamate and
maleimide functions were sequentially introduced into the
azoaromatic photochrome of choice (Fig. 2)24,25,33,35,41. In this
case, however, the azobenzene cores of MAGslow

2P and MAGslow
2P�F

were not commercially available and they had to be previously
synthesized by diazotization of aminobenzoic acids 4a (R=H)
and 4b (R= F) followed by coupling with sodium phenylamino-
methanesulfonate 1, which was readily available from aniline and
the formaldehyde sodium bisulfite adduct42. Posterior removal of
the amino protecting group delivered amino acids 5a and 5b in
moderate yields. Then, the sequence continued by joining the
monoprotected ethyldiamino tether to 5a and 5b using the
carbodiimide coupling reagent N-ethyl-N′-(3-dimethyldiamino-
propyl)-carbodiimide HCl along with 1-hydroxybenzotriazole
hydrate and diisopropylethylamine as a base. Subsequent acid
removal of the tert-butyl carbamate protection and introduction
of previously described glutamate derivative 235 using the same
coupling conditions afforded intermediates 6a and 6b in 47 and
49%, respectively, for the three steps. The next reaction between
these intermediates and the freshly prepared acid chloride of

Table 1 2P absorption cross sections and cis thermal
stabilities of model azo compounds in water

Azo compounda σ2,trans (GM)b ΔEzcis�trans (kJ mol−1)c

AzoMAG

R= 4-NHCOMe 0d 91.2 (25.5 min)f

R′= 4′-NHCOMe
AzoMAG2p

R= 4-NHCOMe 56e 67.7 (118 ms)f

R′= 4′-NMe2
Azo1
R= 4-NHCOMe 58 97.2 (4.9 h)
R′= 4′-CONH2

Azo2
R= 4-NHCOMe 69 98.1 (7.0 h)
R1′= 4′-CONH2

R2′= 2′-F
Azo3
R= 4-NHCOMe 82 101.0 (22.6 h)
R1′= 4′-CONH2

R2′= 2′,4′-F
Azo4
R= 4-NHCOMe 112 46.0 (18.6 μs)
R1′= 4′-CONH2

R2′ = 2′-NO2

Azo5
R= 4-NHCOMe 51 112.0 (80 days)
R1′= 4′-CONH2

R2= R2′= 2′,4′-F

Calculations performed at the CAM-B3LYP/6–31G(d) level and accounting for solvent (water)
effects with a self-consistent PCM continuum method
2P two-photon, PCM polarizable continuum model
aStructures shown in Supplementary Fig. 2
b2P absorption cross section for the S0→ S2 transition of the trans isomer
cIn all the cases, the lowest-energy barrier height for the thermal cis→ trans isomerization was
found to correspond to an inversion mechanism. In parentheses τcis values estimated at 298 K
from Eyring equation are shown
dσ2= 10 GM34 for trans-MAG0 containing an AzoMAG core
eσ2= 80GM34 for trans-MAG460 containing an AzoMAG2p core
fEstimated from the experimental τcis values reported for MAG25 and MAG2P

33 at room
temperature using Eyring equation
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maleimide derivative 343 furnished compounds 7a and 7b, which
feature all the envisioned functional fragments of the final
photoswitches. Finally, acid removal of all the protecting groups
of the glutamate moiety delivered the target compoundsMAGslow

2P

and MAGslow
2P�F

as their monotrifluroacetate salts in good yields.
Figure 3a shows the 1P absorption spectra of trans-MAGslow

2P
and trans-MAGslow

2P�F
in aqueous buffer, which are compared to

those of trans-MAG and trans-MAG2p. As predicted by TDDFT
calculations (Supplementary Table 2), very similar absorption
signals were registered for the azoaromatic cores of trans-MAG,
trans-MAGslow

2P , and trans-MAGslow
2P�F

, which are typical for
azobenzene-type switches in the absence of strong mesomeric
EDG and EWG1: they show an intense absorption band at λmax ~
360 nm corresponding to the allowed 1P S0→ S2 transition (ππ*
band), and a broad shoulder at λ ~ 400–500 nm arising from the
forbidden 1P S0→ S1 transition (nπ* band). This is in contrast
with the absorption spectrum of trans-MAG2p bearing an amino-
substituted azo core, the ππ* band of which notably red-shifts and
overlaps with the nπ* band33.

Upon excitation of trans-MAGslow
2P and trans-MAGslow

2P�F
ππ* band

at 365 nm in either organic (dimethylsulfoxide (DMSO)) or aqueous
(99% phosphate-buffered solution (PBS):1% DMSO) media, spectral
changes were observed in absorption that were consistent with 1P

trans→ cis photoisomerization, as confirmed by 1H nuclear
magnetic resonance (NMR) (Supplementary Figs 3-4). High
trans→ cis photoisomerization quantum yields and cis-enriched
photostationary states were determined for both MAGslow

2P and
MAGslow

2P�F
at these irradiation conditions (Φtrans→ cis ~ 0.15 and %

cisPSS ~ 70% in aqueous buffer), which were similar to those
measured for their azoaromatic cores and MAG (Supplementary
Table 3). UV-vis absorption spectroscopy and 1H NMR also
revealed efficient 1P cis→ trans photoisomerization of MAGslow

2P

and MAGslow
2P�F

upon excitation of their nπ* band at 473 nm
(Φcis→trans ~ 0.26 and %transPSS ~ 85% in aqueous buffer), in
analogy to the behavior registered for their azobenzene units and
MAG (Supplementary Fig. 5 and Supplementary Table 4). In
addition, thermal back-isomerization of cis-MAGslow

2P and cis-
MAGslow

2P�F
was also observed at room temperature, which occurred

in the time span of tens of minutes in aqueous media (τcis ~ 10min
in 99% PBS:1% DMSO, Supplementary Fig. 6 and Supplementary
Table 5). Importantly, this demonstrates that the azoaromatic cores
selected for both MAGslow

2P and MAGslow
2P�F

possess long-lived cis
isomers, as anticipated by our theoretical calculations. Therefore,
these PTLs fairly reproduce the large τcis value of MAG and clearly
surpass the thermal stability of cis-MAG2p and cis-MAG460 despite
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the push-pull substitution pattern of their azoaromatic photo-
chromes (Fig. 3b).

In view of the optimal photochemical behavior established for
MAGslow

2P and MAGslow
2P�F

, we next explored their capacity to
photocontrol LiGluR channels in living cells under 1P stimula-
tion. Thus, GluK2 receptors bearing a cysteine residue at position
L439C (GluK2-L439C) were expressed in human embryonic
kidney 293 (HEK293) cells and incubated with the azobenzene-
based compound of choice for selective conjugation (MAGslow

2P ,
MAGslow

2P�F
, MAG, and MAG2P).

In a first set of experiments, the photoinduced operation of the
resulting LiGluRs was evaluated using whole-cell patch-clamp, a
technique that allows measuring the currents elicited across the
cell membrane when modulating ion fluxes via channel opening
and closing24,25. Large and repetitive electrophysiological signals
were recorded in all the cases upon trans→ cis photoisomeriza-
tion of the PTLs (i.e. LiGluR channel opening) with UV and
violet light (MAGslow

2P ,MAGslow
2P�F

, and MAG) or broadband visible
light (MAG2P). Cell basal current levels could be next recovered
by reverting back this process (i.e. LiGluR channel closing) upon
illumination with blue and green radiation (MAGslow

2P , MAGslow
2P�F

,
and MAG) or thermally in the dark (MAG2P; Supplementary
Fig. 7). By scanning the excitation wavelength used to induce
LiGluR channel opening, the action spectra could be measured
for each of the photoswitchable compounds under analysis
(Fig. 3c). As expected from their photochemical properties, a very

similar spectral response was registered for MAGslow
2P , MAGslow

2P�F
,

and MAG, which generated maximal electrophysiological signals
when irradiating LiGluR-expressing cells at ~375 nm. By contrast,
a broader red-shifted action spectrum was measured for MAG2P

peaking at ~425 nm. In addition, further electrophysiological
measurements were conducted to demonstrate that the photo-
switches MAGslow

2P and MAGslow
2P�F

: (a) preserve their long thermal
cis lifetimes after tethering to GluK2 (~10 min, Supplementary
Fig. 8) as well as the fast channel opening and closing times
(<0.5 s, Supplementary Fig. 9 and Supplementary Table 6)
previously reported for MAG24,25; and (b) do not inhibit the
native physiological activity of the receptor, which retains their
intrinsic response to free glutamate (Supplementary Fig. 10) and
rapid desensitization kinetics (Supplementary Fig. 11) after
photoswitch conjugation.

Taking advantage of the Ca2+ permeability of LiGluR channels,
their light-gated operation under 1P stimulation was further
quantified by means of calcium imaging, using GCaMP6s co-
expressed with GluK2-L439C in HEK293 cells. GCaMP6s is a
genetically encoded intracellular fluorescent calcium indicator
that undergoes a large increase in emission upon calcium ion
complexation44. In this case, we focused on MAGslow

2P -,
MAGslow

2P�F
-, and MAG-tethered LiGluRs, since the low thermal

stability of cis-MAG2P is reported to lead to poor photoinduced
calcium imaging signals33. In contrast, the large τcis values of
MAGslow

2P , MAGslow
2P�F

, and MAG yielded intense, reversible, and
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2P�F
, and trans-MAG2P in 99% phosphate-buffered solution (PBS):1% dimethylsulfoxide (DMSO). b Thermal

lifetimes of cis-MAG, cis-MAGslow
2P , cis-MAGslow

2P�F
, and cis-MAG2P at room temperature in 99% PBS:1% DMSO. Errors from the monoexponentials fits to

obtain τcis are shown. c Normalized 1P action spectra recorded using whole-cell patch-clamp in human embryonic kidney 293 (HEK293) cells expressing
GluK2-L439C after conjugation to MAG, MAGslow
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, and MAG2P (n= 5, 7, 3, and 8 biologically independent cells, respectively). Errors are
standard error of the mean (SEM). d Normalized 1P action spectra recorded using calcium imaging in HEK293 cells co-expressing GluK2-L439C and
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(n= 33, 20, and 25 biologically independent cells, respectively). Errors are SEM. In c and
d wavelength-dependent photoresponses were normalized to the maximum signal along the spectral range measured for each cell before averaging over
different cells. Source data for c and d are provided as a source Data file
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reproducible light-triggered fluorescent responses in GCaMP6s-
expressing cells upon repetitive illumination with sequential
pulses of UV-violet and green radiation (Supplementary Fig. 12).
Similar action spectra were again measured for these PTLs using
calcium imaging (Fig. 3d), and the maximal responses obtained
for the three compounds at 360 nm were nearly equivalent
(Supplementary Fig. 13). This, together with the whole-cell patch-
clamp measurements conducted, proves that the 1P biological
activity of MAG in LiGluRs is preserved for MAGslow

2P and
MAGslow

2P�F
photoswitchable ligands bearing electronically asym-

metric azoaromatic cores and slightly different structures.

2P stimulation in cultured cells. NIR-induced 2P operation of
LiGluR with PTLs MAGslow

2P and MAGslow
2P�F

was studied by cal-
cium imaging, since this enabled all-optical control and mon-
itoring of the light-gated ion channels. Experiments were
conducted in a confocal fluorescence microscope equipped with
both continuous-wave visible lasers and a femtosecond pulsed Ti:
Sapphire laser. This allowed for sequential and independent 1P
and 2P stimulation of cells by raster-scanning the focused laser
beam of choice over the sample while detecting the fluorescence
signal of the calcium ion indicator for the whole field of view.

To evaluate the 2P physiological activity of MAGslow
2P and

MAGslow
2P�F

, we first undertook experiments on HEK293 cells
expressing both GluK2-L439C and R-GECO145, a red genetically
encoded fluorescent Ca2+ probe. Figure 4a depicts calcium
imaging fluorescence responses measured for these cells after
conjugation with MAG, MAGslow

2P , and MAGslow
2P�F

(see also
Supplementary Movies 1-2). For comparison, all the cells were
subjected to two consecutive cycles of 1P LiGluR photostimula-
tion with violet light (405 nm) followed by two cycles of 2P
excitation with NIR radiation (780 nm). After every stimulation,
LiGluR was deactivated by 1P absorption of green light (514 nm).
In averaged recordings over n > 10 cells in the field of view, no or
very low signals were observed for MAG-tethered LiGluR upon
irradiation with NIR light, which highlights the poor efficiency of
2P trans→ cis photoisomerization for this ligand, as already
reported33,34. In agreement with our theoretical calculations, a
remarkable increase in 2P responses was observed when replacing
MAG with MAGslow

2P and MAGslow
2P�F

bearing push-pull azoaro-
matic cores. In fact, 1P- and 2P-induced calcium imaging
responses of similar intensities were measured with MAGslow

2P�F
,

for which the highest σ2 value was anticipated owing to the high
electronic asymmetry of its trans-azobenzene photochrome.
Notably, such efficient 2P stimulation of LiGluR upon conjuga-
tion to MAGslow

2P�F
was found to be reproducible, repetitive, and to

occur with minimal photodegradation, since negligible variation
in calcium imaging response was observed after four consecutive
light-gating cycles for different individual cells (Fig. 4b).

By comparing the 1P- and 2P-induced calcium imaging
responses recorded on the same cells (2P/1P ratio), a detailed
assessment of the high multiphoton physiological activity of
MAGslow

2P and MAGslow
2P�F

was performed. First, we determined the
2P action spectra of these compounds and MAG when
conjugated to HEK293 cells co-expressing GluK2-L439C and R-
GECO1, which showed a similar spectral distribution (Fig. 5a). In
all the cases, rather broad 2P action spectra were found with
maxima at ~780 nm, which reasonably agrees with twice the
wavelength of the 1P absorption band of the 2P allowed S0→ S2
transition of the trans-azobenzene core of these compounds
(~360 nm). However, much higher 2P/1P ratios were obtained for
MAGslow

2P and MAGslow
2P�F

compared to MAG at equivalent
excitation conditions. In particular, when considering 2P

stimulation of LiGluR at the spectral maximum (780 nm) and
averaging over a large number of cells (n > 25), 3.5- and 6-fold
increases in 2P/1P intensity ratio were measured for MAGslow

2P

and MAGslow
2P�F

relative to MAG, respectively (Fig. 5b). Even more

importantly, 2P stimulation of MAGslow
2P - and MAGslow

2P�F
-tethered

LiGluR was observed for all the cells analyzed, while no
multiphoton response could be measured for ~30% of the
GluK2-L439C-expressing cells conjugated with MAG under the
same illumination conditions (Fig. 5c). Overall, these results
indicate that MAGslow

2P and, especially, MAGslow
2P�F

are very
advantageous photoswitches to efficiently and reliably control
LiGluR in neurotransmission studies under 2P excitation with
NIR radiation.

2P stimulation in hippocampal organotypic slices. In view of
the superior 2P stimulation performance observed for MAGslow

2P�F
in GluK2-L439C-expressing HEK cells, we explored the use of
this PTL to the multiphoton control with NIR light of neuronal
cells embedded in their physiological environment. In this way we
could not only assess the efficiency of MAGslow

2P�F
in neurons with

mature synapses naturally containing all endogenous glutamate
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Fig. 4 One-photon (1P) and two-photon (2P) stimulation of MAG,
MAGslow

2P , and MAGslow
2P�F

in cultured cells. a Individual (thin lines) and
average (thick lines) calcium imaging fluorescence traces recorded for
human embryonic kidney 293 (HEK293) cells co-expressing GluK2-L439C
and R-GECO1 after conjugation to MAG (n= 16 biologically independent
cells), MAGslow

2P (n= 14 biologically independent cells), and MAGslow
2P�F

(n=
34 biologically independent cells). The bands around average traces plot
the corresponding SEM. Both 1P (violet, 405 nm, power density= 0.37
mW μm−2) and 2P excitation scans (red, 780 nm, power density= 2.8
mW μm−2) were applied to open LiGluR channels and trigger calcium-
induced R-GECO1 fluorescence enhancement, while 1P excitation scans
(green, 514 nm, power density= 0.35mW μm−2) were applied to revert
back the process. b Repetitive 2P-induced calcium imaging fluorescence
responses recorded in five different HEK293 cells co-expressing GluK2-
L439C and R-GECO1 after conjugation to MAGslow

2P�F
. Source data for a are

provided as a source Data file
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receptors but also test the ultimate advantages of 2P stimulation.
With this aim, we prepared organotypic slice cultures from
neonatal rat hippocampi and biolistically transfected them with
GluK2-L439C-eGFP and RCaMP246. This allowed the cells
expressing LiGluR within the slices to be localized by the green
fluorescence of enhanced green fluorescent protein (eGFP), while
simultaneously recording their activity after 1P or 2P stimulation
by monitoring the red fluorescence of the calcium ion probe
RCaMP2 (Fig. 6a). Transfected hippocampal slices were finally
incubated withMAG or MAGslow

2P�F
and their photoresponses after

consecutive 1P and 2P stimulation were measured and compared.
Neither Concanavalin A nor toxins were used in these experi-
ments to inhibit GluK2 desensitization upon prolonged binding
to the glutamate unit of trans-MAG and trans-MAGslow

2P�F
. Thus,

our measurements on brain slices truly reported on intact neu-
ronal gating and connectivity.

As depicted in Fig. 6b, d, slices incubated with MAG showed
robust photoresponses during 1P stimulation (405 nm), but no or
minimal photoresponses when applying 2P stimulation (780 nm).
On the contrary, slices incubated with MAGslow

2P�F
did not only

show clear photoresponses upon illumination at 405 nm, but
comparable light-induced signals were also recorded for the same
cells by excitation at 780 nm, thus indicating very similar 1P
and 2P photoswitching efficacies (Fig. 6c, e). In all the cases,
the photoresponses observed upon stimulation at 405 and/or
780 nm were completely inhibited under green light illumination
(514 nm), which demonstrated the long τcis of both MAG and
MAGslow

2P�F
switches (see also Supplementary Movies 3-4).

To compare the efficacy of LiGluR photocontrol in slices
conjugated with MAG or MAGslow

2P�F
, we determined both the

calcium-induced fluorescence enhancement responses after 1P
and 2P stimulation (Fig. 6f) and the 2P/1P response ratio
(Fig. 6g). Clearly, MAG could efficiently activate LiGluR and thus
induce neuronal activity under 1P excitation at 405 nm, but not
upon 2P stimulation at 780 nm. In contrast, MAGslow

2P�F
stimula-

tion reliably activated neurons using both 1P and 2P excitation
with violet and NIR light, respectively, and similar 1P and 2P
signals were indeed measured at our experimental conditions. In
addition, the 2P-induced control of neuronal activity with
MAGslow

2P�F
was found to be robust and reproducible in many

different cells (n= 6 cells) located at distinct depths of the brain
tissue (0–100 μm) from hippocampal slices cultured for different
days (8–15 days in vitro). Importantly, cells expressing RCaMP2
but not LiGluR-eGFP did not respond to MAG or MAGslow

2P�F
photostimulation (Supplementary Fig. 14).

2P stimulation in vivo in Caenorhabditis elegans. We further
tested the ability of MAGslow

2P�F
to control neuronal activity in vivo

using 2P excitation. For that purpose, we used Caenorhabditis
elegans as a model of choice to analyze neuronal circuits. The
morphology and function of its 302 neurons are characterized in
detail, and allow scrutinizing sensory and motor circuits, among
others. Figure 7 summarizes the results of all-optical experiments
with GluK2-L439C-mCherry and GCaMP6s fluorescent calcium
reporter co-expressed in touch receptor neurons (TRNs). From
the six TRNs, which tile the receptive field of the animal in
anterior/posterior and left/right, we specifically focused on the
single pair PLML/R, which is located near the tail of the nema-
tode (Fig. 7a). Like in other neurons within the nervous system,
pairs of TRNs can be selectively stimulated in the anterior and
posterior part of the animal using spatial light patterning, but
differential unilateral activation is difficult, which poses a hurdle
to photomanipulate their activity at high resolution using opto-
genetics47. This is especially relevant when neurons are over-
lapping along the optical axis, as shown in Fig. 7b (compare
confocal projection top view, and side view of the confocal sec-
tions) or are closely packed as in the head. In such cases, 2P
excitation provides a unique advantage over 1P excitation to
activate cells with 10 μm axial plane selectivity48.

Upon expression of GluK2-L439C-mCherry in TRNs, we
observed localization of mCherry on the plasma membrane and
in vesicles that are transported along the sensory neurite
(Supplementary Movie 5). After delivery of MAGslow

2P�F
to living

animals (see details in the Methods section), calcium activity was
monitored in the posterior TRNs (PLM) expressing GluK2-
L439C-mCherry and GCaMP6s using a confocal fluorescence
microscope. Clear photoresponses to 2P excitation were observed
in every animal responding to 1P excitation (n= 5 neurons from
four different individuals, a 2P/1P excitation efficacy of 100%,
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Fig. 5 Average two-photon (2P) activity of MAG, MAGslow
2P , and MAGslow

2P�F
in cultured cells. a 2P action spectra of MAG, MAGslow

2P , and MAGslow
2P�F

after
conjugation to GluK2-L439C-expressing human embryonic kidney 293
(HEK293) cells. Fluorescence calcium responses were measured using R-
GECO1. Before averaging over different cells, the 2P responses of each cell
were normalized with respect to the 1P response at 405 nm (MAG: 740,
760, 780, 800, and 820 nm; n= 28, 33, 40, 7, and 12 biologically
independent cells, respectively;MAGslow

2P : 740, 760, 780, 800, and 820 nm;
n= 20, 9, 12, 16, and 17 biologically independent cells, respectively; and
MAGslow

2P�F
: 720, 740, 760, 780, 800, 820, and 840 nm; n= 14, 17, 18, 86,

15, 23, and 17 biologically independent cells, respectively). Errors are SEM.
b Ratio between the 2P and 1P responses of MAG, MAGslow

2P , and MAGslow
2P�F

for the same cells excited at 780 and 405 nm, respectively. Errors are SEM.
c Reliability of the 2P calcium imaging response elicited in GluK2-L439C-
expressing HEK293 cells after conjugation to MAG, MAGslow

2P , and
MAGslow

2P�F
(n= 72, 25, and 86 biologically independent cells, respectively).

Reliability is expressed as the percentage of transfected cells showing
measurable 2P stimulation signals. Source data for a and b are provided as
a source Data file
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Figs. 7c, e, Supplementary Movies 6–7), whereas control-treated
animals (vehicle) only showed a partial fluorescence reduction
due to bleaching of mCherry and GCaMP6s (n= 5 neurons from
four different individuals, Fig. 7d). No signs of toxicity were
observed after compound injection, during recovery and imaging.
Thus, the rationally designed 2P excitation properties of
MAGslow

2P�F
can also be used in vivo to photomanipulate neuronal

activity of single, individual neurons with high efficacy and
selectivity.

Discussion
Genetically targeted and pharmacologically selective49 synthetic
photoswitches offer great potential to dissect neuronal circuits
based respectively on specific promoters and endogenous recep-
tors. However, the efficiency of azobenzene-based photoswitch-
able ligands is ultimately limited by the cis isomer population that
can be achieved upon irradiation, which is determined by dif-
ferent experimental (excitation intensity and wavelength) and
photochemical parameters (trans and cis absorptivities and iso-
merization quantum yields, cis state thermal lifetime). Among
them, the 2P activity of long τcis azobenzene switches is mainly
controlled by the σ2 values for both isomers at the excitation
conditions, since they normally show relatively similar iso-
merization quantum yields (e.g. Φtrans→cis= 0.18 and Φcis→trans

= 0.30 forMAG in 99% PBS:1% DMSO, Supplementary Table 3).
In the case of MAG and MAG0 under NIR illumination, σ2,trans is
low and, worse still, even smaller than σ2,cis, which strongly dis-
favors 2P-induced trans → cis isomerization34. This leads to
photostationary states with very low cis content and, as such, poor
2P LiGluR responses with NIR light even at high excitation
intensities (~20 mW μm−2)33,34. As discussed above, compounds
MAGslow

2P and, especially, MAGslow
2P�F

overcome this drawback by
introducing rationally designed azobenzene cores with both large
σ2,trans and τcis values, which allow for robust and reliable 2P
signals at milder, more cell-compatible excitation conditions (2.8
mW μm−2) that are comparable to 1P responses.

As for MAG2P and MAG460 biological photoactivity, it is
mainly governed by a different factor: the millisecond cis state
lifetime of both switches in physiological media33,34. Although
this enables single-wavelength, fast neuronal stimulation, it dra-
matically limits the extent of the photostationary state reached
even when using high excitation intensities. As a result, MAG2P

and MAG460 also lead to smaller 2P responses with NIR
light than under 1P stimulation (~10–40%) despite their
enhanced σ2,trans values with respect to MAG and MAG0

33,34.
This, together with their low cis state lifetimes, is a severe con-
straint for the 2P stimulation of calcium-evoked photoresponses
with MAG2P and MAG460. On the contrary, the higher stability
of MAGslow

2P and MAGslow
2P�F

cis isomers enables sustained receptor
activation, which combined with their optimized 2P excitability
results in larger photoresponse amplitudes and allows the
manipulation of calcium-regulated processes with NIR light.
Thus, while very small R-GECO1 calcium responses were
described for LiGluR-expressing HeLa cells under 2P stimulation
of MAG460 (ΔF/F < 0.1)34, we obtained herein calcium-induced

Fig. 6 Two-photon (2P) Ca2+ photoresponses in rat hippocampal
organotypic slices expressing GluK2-L439C-eGFP and RCaMP2.
a Microphotograph of a neuron expressing both RCaMP2 (red) and GluK2-
L439C-eGFP (green) (scale bar= 20 μm). b, c Real time traces of a single-
cell neuronal activity of slices incubated with b MAG or c MAGslow

2P�F
.

d, e Average one-photon (1P) and 2P responses of neurons incubated with
d MAG (n= 3 biologically independent cells) or e MAGslow

2P�F
(n= 6

biologically independent cells). In b–e 1P stimulation was performed at 405
nm (purple bar, 0.81 mW μm−2) and 514 nm (green bar, 0.35 mW μm−2),
and 2P stimulation at 780 nm (red bar, 2.8 mW μm−2). f, g Quantification
of photoresponses in slices incubated with MAG (black bars, n= 5
biologically independent cells) and MAGslow

2P�F
(red bars, n= 6 biologically

independent cells): f fluorescence enhancement; g ratio between the 2P
and 1P responses of MAG and MAGslow

2P�F
for the same cells. Error bars are

SEM. Source data for d–g are provided as a source Data file
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fluorescence enhancement values higher than 1 for the same
indicator in HEK cells upon excitation of MAGslow

2P�F
-tethered

LiGluR with NIR light.
Other advantages derive from the use of MAGslow

2P and
MAGslow

2P�F
over MAG2P and MAG460 for the 2P stimulation of

LiGluR. Technically, cis isomer stability allows maintaining the
glutamate moiety bound to the receptor in the dark, which best
mimics the presence of a high neurotransmitter concentration in
extracellular medium during presynaptic release. This approach is
in contrast to the use of Concanavalin A to block receptor
desensitization thus keeping the channel open (MAG2P)33, and to
mutation K456A used in GluK2 to quicken receptor recovery
from desensitization34, which results in higher and longer-lasting
currents during illumination of a cis-unstable photoswitch
(MAG460). Such sustained calcium influx facilitates photo-
response detection in imaging experiments but could be toxic for
the neurons, and is not physiological. In our case, we used
Concanavalin A in order to quantify steady-state currents in
recordings with cell lines (Figs. 3–5), and to obtain clear
responses in the first in vivo studies (Fig. 7), but physiological
desensitization was always preserved in all the experiments with
rat brain slices (Fig. 6). Likely, the cis isomers of MAGslow

2P and

MAGslow
2P�F

cause receptor photoactivation, channel opening, and
closing by desensitization, which limits the cytotoxic effects of
calcium influx. The stability of cis isomers also allows shortening
illumination pulses and reducing phototoxicity. The repetitive
photoresponses that we obtained in slices and in vivo are in
agreement with the low toxicity of our compounds. These robust
calcium responses mediated by desensitizing receptors could be
related to triggering of intracellular processes50 and/or changes in
synaptic receptor mobility51. These processes are involved in
neuronal plasticity and are currently under investigation.

Photocontrol of endogenous neuronal receptors52 and intra-
cellular presynaptic proteins53 has been recently shown in C.
elegans using 1P excitation. Our 2P excitation experiments in vivo
with MAGslow

2P�F
conjugated to GluK2-L439C take advantage of

genetic manipulation for demonstration purposes (including the
expression of fluorescent calcium reporters), but the robust
photoresponses obtained (Fig. 7, Supplementary Movies 6-7)
suggest that introducing our ortho-fluorosubstituted azobenzene
cores in freely diffusible photoswitches would also allow photo-
controlling endogenous neuronal receptors and signaling proteins
with high efficacy and spatial confinement. 2P excitation is cur-
rently the only method that allows photostimulation with axial
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Fig. 7 In vivo calcium induced photoresponses by two-photon (2P) stimulation ofMAGslow
2P�F

in C. elegans. a Schematics of C. elegans in which touch receptor
neurons (TRNs) are depicted. Squared region is magnified in b. b Microphotograph of an animal expressing LiGluR-mCherry (red) and GCaMP6s (green)
(scale bar= 5 μm). Top and lateral section view of TRN from the tail. c, d Average traces of one-photon (1P)- and 2P-induced photoactivation of TRNs in
animals treated with cMAGslow

2P�F
(n= 5 and 6 cells from four different animals experiments for 1P and 2P traces, respectively) or d with vehicle (n= 5 and 6

cells from four different animals experiments for 1P and 2P traces, respectively). Continuous line trace indicates GCaMP6s fluorescence signal and dashed
trace mCherry fluorescence. In c and d 2P stimulation was performed at 780 nm (red bar, 2.8 mWmm−2) and 1P stimulation at 405 nm (purple bar, 15
µWmm−2) and 514 nm (green bar, 1.21 µWmm−2). e Quantification of photoresponses (fluorescence enhancement) in animals injected with MAGslow

2P�F
(red bars, n= 5 cells from four different animals experiments) and vehicle (black bars, n= 5 cells from four different animals experiments). Error bars are
SEM. Source data for c–e are provided as a source Data file
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plane selectivity at micrometer resolution48 and thus has an
advantage over 1P excitation to activate individual neurons in
clustered 3D structures like ganglia and brain tissue. Thus, pho-
toswitches that combine high 2P excitation efficacy and phar-
macological selectivity will be an invaluable tool to investigate
intact neuronal circuits and subcellular signaling pathways, and a
powerful complement to optogenetic manipulation techniques54.

Thus, we have shown that 2P-optimized azobenzene photo-
switches are an important complement to 2P-enabled caged
ligands like MNI-glutamate49 or optogenetic tools like C1V148

and ChR2-H134R55, but they have advantages of their own.
Tethered MAG derivatives allow reversible activation of gluta-
mate receptors without the need of perfusing high concentrations
of caged glutamate compounds and the disadvantages of gluta-
mate and byproduct spillover upon uncaging. Moreover, gluta-
mate receptors have larger cation conductances than
channelrhodopsins56, do not require illuminating large cellular
regions57, and can be targeted by MAG-like photoswitches at
their physiological location58. Finally, the 2P-optimized azo-
benzene core reported here entails minimal structural modifica-
tions that can be grafted into other azobenzene-based
photoswitches, provided that their pharmacological properties are
not altered, and thus these findings have direct and general
application to light-regulated ligands2–4.

In conclusion, we rationally designed azobenzene chromo-
phores based on theoretical calculations to present both high 2P
absorptivity of NIR light and long cis state lifetime, which were
then exploited in the synthesis of PTLs MAGslow

2P and MAGslow
2P�F

.
Optimized 2P stimulation of light-gated ionotropic glutamate
receptors was accomplished with these compounds, which far
surpassed the performance of other azobenzene-based photo-
switches previously assayed for the manipulation of neuronal
tissues under multiphoton excitation conditions. Taking advan-
tage of the high 2P excitability of MAGslow

2P and MAGslow
2P�F

with
NIR radiation, reliable and sustained photocontrol over the
activity of neurons could be attained in light-scattering tissue
both in vitro and in vivo, such as in brain slices under nearly
physiological conditions and C. elegans TRNs. The results pre-
sented here constitute a proof of concept that paves the way
toward all-optical experiments of neuronal activity imaging and
manipulation in vivo using azobenzene photoswitches, which
ultimately require the use of multiphoton excitation with NIR
light59.

Methods
Theoretical calculations. All calculations were carried out at the DFT (for ground
electronic states) and TDDFT (for excited electronic states) levels using the long-
range corrected hybrid CAM-B3LYP functional, which is known to correctly
describe excited states of charge-transfer type60. 6–31G(d), a split-valence basis set
with polarization functions in heavy atoms, was used in all the cases. Twenty
excited electronic states of the same multiplicity as the ground electronic state
(singlet) were converged in the TDDFT calculations. Solvent (water) effects were
introduced through the self-consistent polarizable continuum model continuum
method61. To compute 2P absorption properties, the density functional response
theory was employed to calculate the 2P transition matrix elements. 2P absorption
cross sections were then estimated through the following expression62:

σ2ðωÞ ¼
8π2αa50ω

2

cΓ
δðωÞ ð1Þ

where α is the fine structure constant, a0 the Bohr radius, c is the speed of light in
vacuum, Γ is the full width at half maximum of the Lorentzian line-shape
broadening, and δ(ω) is the 2P absorption transition probability calculated through
the response theory assuming linearly polarized excitation light. We set Γ= 0.2 eV,
which reasonably agrees with the value experimentally determined for trans-
MAG460 (~0.15 eV34). Here we also considered the most common case of a
degenerate 2P absorption process where ω is half of the transition frequency of the
excited state. All TDDFT calculations and evaluation of 2P absorption properties
were calculated using the Dalton suite of programs63. Optimizations and evaluation
of energy barriers in the ground electronic state were carried out with the

GAUSSIAN09 program64. For energy barrier calculations of thermal cis-trans
isomerization, we investigated both the rotation and inversion mechanisms. In the
case of asymmetric azobenzenes, the two feasible paths leading to inversion were
analyzed.

Synthesis. A detailed description of the synthesis of MAGslow
2P and MAGslow

2P�F
is

given in the Supplementary Methods.

Photochemical characterization. Trans-cis isomerization of MAGslow
2P , MAGslow

2P�F
,

and their separated azobenzene photochromes in solution was investigated by: (i)
1H NMR for the elucidation of the photostationary state mixtures in organic
solvents; and (ii) steady-state UV-vis absorption spectroscopy for trans-cis pho-
toisomerization in aqueous media and slow cis-trans thermal back-isomerization
processes.

Cell culture. Tsa201 cells were purchased from the European Collection of
Authenticated Cell Culture. HEK293 tsA201 cells were plated on glass coverslips
and transfected with GluK2-L439C-eGFP or co-transfected with GluK2-L439C
and GCaMP6s or R-GECO1. Prior to each experiment, coverslips were incubated
with the PTL of choice to allow chemical conjugation to the receptor channel.
A second incubation with Concavalin A was done to inhibit desensitization of
the glutamate receptor. Cells were mounted on the recording chamber filled with
a bath solution composed of (in mM): 140 NaCl, 1 MgCl2, 2.5 KCl, 10 4-(2-
hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2.5 CaCl2, and 10–20
glucose to fix osmolarity to 310 mOsm kg−1. NaOH was added to adjust the
pH to 7.42. To activate GluK2-L439C, 300 μM glutamate in bath solution was
perfused.

Electrophysiology. Voltage-clamp recordings under whole-cell configuration were
acquired at 1 kHz. Borosilicate glass pipettes were pulled with a typical resistance of
4–6MOhm and filled with a solution containing (in mM): 120 cesium methane-
sulfonate, 10 tetraethylamonium chloride, 5 MgCl2, 3 Na2ATP, 1 Na3GTP, 20
HEPES, 0.5 EGTA; osmolarity was 290mOsm kg−1 and pH 7.2 was adjusted with
CsOH. Cell membrane voltage was held at −70mV. Photostimulation during
electrophysiological recordings was induced by illuminating the entire focused field
with monochromatic light in an inverted microscope (power density: 22.0 μWmm−2

at 380 nm, 45.9 μWmm−2 at 460 nm, and 47.4 μWmm−2 at 500 nm).

Calcium imaging and 1P stimulation. Cells were imaged on an inverted fully
motorized digital microscope at room temperature with a frame rate of 2 s and
exciting GCaMP6s at 490 nm during 10 ms. Photoisomerization was achieved by
illuminating the focused sample with flashes of violet (380 nm, 0.5 s duration) and
green (500 nm, 0.5 s duration) light for activation and deactivation, respectively.
Calcium imaging activation spectra under 1P stimulation ranged from 280 to
480 nm at 20 nm steps. Light flashes were nested in between GCaMP6s fluores-
cence measurements. Photostimulation intervals lasted a total of 3.2 min for acti-
vation and 2.4 min for deactivation. At the end of this protocol, 300 μM free
glutamate solution was added and the calcium imaging response was measured.

Calcium imaging and 2P stimulation in HEK cells. 2P experiments were per-
formed in the Advanced Digital Microscopy Core Facility of IRB Barcelona with a
confocal multiphoton microscope equipped with a 80MHz Ti:Sapphire for 2P
stimulation with NIR light (710–990 nm), and cw diode (405 nm) and Ar (514 nm)
lasers for 1P stimulation and calcium imaging with visible light. In these experi-
ments, R-GECO1 was used as a Ca2+ fluorescent indicator instead of GCaMP6s
because it does not absorb at 405 nm, the excitation wavelength used to test the 1P
activity of LiGluR. Imaging of R-GECO1 was done at 514 nm with a frame rate of
4 s. Photostimulation was achieved by raster-scanning the tightly focused laser of
choice over a selected area of the field of view: 405 nm (0.37 mW μm−2) for 1P
activation, 514 nm (0.35 mW μm−2) for 1P deactivation, and 720–840 nm
(2.8 mW μm−2) for 2P activation of LiGluR. Photostimulation scans were fit to
keep imaging interval, and illumination periods at a given wavelength lasted in
total 1 min. Interstimulus imaging periods also lasted 1 min.

Calcium imaging and 2P stimulation in hippocampal slices. All procedures were
conducted in accordance with the European Guidelines for Animal Care and Use
in Research and were approved by the Animal Experimentation Ethics Committee
at the University of Barcelona (Spain). Hippocampal organotypic slices of 400 μm
in thickness were obtained from postnatal day 6–8 rats and cultured for 5–7 days
until biolistically transfected with RCaMP2a and GluK2-L439C-eGFP, as described
in ref. 46. Although transfection with R-GECO1 was also assayed, RCaMP2a was
finally used as a fluorescent indicator in hippocampal slice cultures because of the
higher level of expression achieved. Before each experiment, slices were incubated
with the PTL of choice for 10 min in artificial cerebrospinal fluid (ACSF) con-
taining 119 mM NaCl, 2.5 mM KCl, 3 mM CaCl2, 0.2 mM MgCl2, 26.2 mM
NaHCO3, 1 mM NaH2PO4, and 11 mM glucose, equilibrated with 5% CO2/95% O2.
After washes with fresh ACSF, slices were placed on the recording chamber and
were continuously perfused with ACSF. RCaMP2a was excited at 561 nm with an
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imaging interval of 4 s. eGFP was excited at 488 nm. Photostimulation was
achieved by raster-scanning the tightly focused laser of choice over the whole field
of view at 400 Hz: 405 nm (0.81 mW μm−2) for 1P activation, 514 nm (0.35 mW
μm−2) for 1P deactivation, and 780 nm (2.8 mW μm−2) for 2P activation of
LiGluR. Photostimulation scans were fit to keep imaging interval, and illumination
periods at a given wavelength lasted in total 1 min. Interstimulus imaging periods
lasted 1.5 min.

Calcium imaging and 2P stimulation in vivo in C. elegans. Animal experiments
carried out have been approved by the ethics committee of the ERC and the animal
welfare has been respected. C. elegans are nematodes and therefore not covered by
EU Directive 2010/63/EU, which only covers vertebrates and cephalopods. Like-
wise, worms are not covered by the Spanish “Código de protección y bienestar
animal”. For these reasons, there is no need for authorizations, personal licenses,
standards for procedures or detailed description of number of animals to be used,
nature of experiments or anticipated impact, and minimization thereof. We gen-
erated strain MSB104 [mirEx22(mec-17p::iGluR6::mCherry;myo-2p::mCherry);
ljSi123(mec-7p:GCaMP6s::SL2::tagRFP);lite-1(ce314)X]. Transgenesis was per-
formed according to standard methods for microinjection65 by microinjecting a
DNA mix containing 50 ng μl−1 pNMSB18 (mec-17p::iGluR6::mCherry, Supple-
mentary Table 7), 1.5 ng μl−1 myo-2p:mCherry as a coinjection marker, and
50 ng μl−1 1Kb Plus DNA ladder (Invitrogen) as a carrier into the gonad of GN692
young adult worms66.MAGslow

2P�F
(10 mM in M9 buffer and 0.3 mgml−1 ConA) was

administered to the animals by microinjection into the body cavity. Control group
was performed microinjecting with vehicle (10% DMSO and 0.3 mg/ml ConA in
M9 buffer), and allowed to recover. Only roaming worms surviving the treatment
were considered for the following imaging experiments. After 4 h of compound
administration, TRN neurons co-expressing GluK2-L439C-mCherry and
GCaMP6s were imaged in a single focused plane. Calcium imaging was performed
on a Leica confocal microscope (SP5) through a ×63/1.4-numerical aperture oil
objective (HCX PL APO, Leica). Calcium-sensitive GCaMP6s and calcium-
insensitive red fluorescent proteins (RFPs) were simultaneously excited at 488 and
561 nm for 343 ms, using bidirectional laser scanning at 400 Hz. Images were
recorded with a resolution of 512 × 512 and a digital zoom of 4, with an imaging
interval of 660 ms. GCaMP6s and RFP fluorescence were recorded with two dif-
ferent HyD detectors with a detection range from 500 to 550 nm and from 569 to
648 nm, respectively. Pinhole aperture was set at ~500 μm. Whole-field photo-
stimulation flashes were fit to keep imaging interval. Photostimulation was done at
256 × 256 resolution with bidirectional laser scan, with a digital zoom of 4. One-
photon photostimulation was done at 405 nm (15 μW μm−2), and 2P stimulation
at 780 nm (2.8 mW μm−2). Back-photoisomerization was achieved at 514 nm
(1.21 μW μm−2). Intensity and duration of the photostimulation intervals were
adjusted to obtain the optimal photoresponse and reproducibility.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the findings of this study are available
within the article and its Supplementary Information. Extra data are available from the
corresponding author upon request.
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