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Abstract: The procedure generally used to remove bacterial biofilm adhering to the surface of
titanium on dental implants is implantoplasty. This treatment is based on the machining of the
titanium surface to remove bacterial plaque. In this study, we used 60 grade 4 titanium implants
and performed the implantoplasty protocol. Using X-ray diffraction, we determined the stresses
accumulated in each of the as-received, machined and debris implants. The resistance to corrosion
in open circuit and potentiodynamically in physiological medium has been determined, and the
corrosion potentials and intensities have been determined. Tests have been carried out to determine
ion release by ICP-MS at different immersion times. The results show that the corrosion resistance
and the release of titanium ions into the medium are related to the accumulated energy or the degree
of deformation. The titanium debris exhibit compressive residual stresses of −202 MPa, the implant
treated with implantoplasty −120 MPa, and as-received −77 MPa, with their corrosion behavior
resulting in corrosion rates of 0.501, 0.77, and 0.444 mm/year, respectively. Debris is the material with
the worst corrosion resistance and the one that releases the most titanium ions to the physiological
medium (15.3 ppb after 21 days vs. 7 ppb for as-received samples). Pitting has been observed on the
surface of the debris released into the physiological environment. This behavior should be taken into
account by clinicians for the good long-term behavior of implants with implantoplasty.

Keywords: corrosion; titanium ion release; implantoplasty; debris; residual stresses

1. Introduction

The growth of bone tissue around dental implants has proven to be a highly successful
treatment. The levels of osseointegration normally achieved are between 65% and 80% of
bone in contact with the dental implant, giving a good mechanical fixation [1–6]. However,
currently, the most common danger to osseointegration is peri-implantitis caused by bac-
terial colonization. According to the consensus meeting of Periodontology held in 2008,
peri-implant mucositis can be defined as the presence of inflammation of the peri-implant
mucosa without signs of loss of bone support, while peri-implantitis, in addition to inflam-
mation of the mucosa, is characterized by a loss of bone support [7–9]. The main factor
associated with peri-implantitis is the bacterial plaque around implants due to a lack of
oral hygiene, tobacco, or previous history of periodontal disease [10–14].

When the biofilm adheres to the implant surface, it can produce peri-implant mucosal
inflammation and if the surface is untreated, it can provoke the loss of peri-implant bone.
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Several authors [15–17] studied how peri-implantitis presents a site-specific infection and
has many features in common with chronic adult periodontitis.

Several surgical techniques, such as regenerative, access, or respective surgeries, or a
combination of these, have been proposed for the peri-implantitis treatment [15,16]. On
many occasions after the surgery, the roughness surface may be in contact with the oral
medium. In these cases, implantoplasty (IP) can be applied in order to decontaminate the
supracrestal component of the implant. This technique consists of polishing the implant
surface that has been uncovered by the loss of peri-implant bone (Figure 1) [17]. During
IP, there is a large release of metal debris into the peri-implant tissue that often cannot
be completely removed and remains in the bone and mucosal tissue around the implant.
Besides, the implant machined presents a loss of mechanical properties and presents a new
topography, which is not favorable to osteoblast adhesion. Several researchers studied that
Ti debris in the peri-implant tissue could trigger peri-implant bone loss [14–16]. In addition,
Soto-Alvaredo et al. [18] observed that Ti nanoparticles and ions exert a cytotoxic effect
upon human enterocytes and murine osteoblasts [18–20]. However, the impact of such
metal debris released during IP on a living organism remains unclear. In this contribution,
the corrosion resistance and titanium ion release have been studied in an as-received dental
implant, once the dental implant has been polished (machined) and the debris produced.
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Figure 1. (A) Dental implant with peri-implantitis, (B) Resective surgery. (C) Polishing of the titanium
surface to remove plaque. Implantoplasty process.

In this contribution, we have studied the corrosion behaviour of the original titanium
implants after implantoplasty as well as the debris produced by machining. In addition
to corrosion, the residual stresses on the surface of the dental implant generated by ma-
chining have been determined. These stresses have an important influence on the chemical
degradation behaviour of titanium. These results should be taken into account by clinicians
for the long-term performance of titanium.

2. Materials and Methods

Implantoplasty of 60 commercially pure Ti (grade 4) dental implants (Vega, Klockner,
Escaldes Engordany, Andorra) was carried out by the same investigator (MP) using a GEN-
TLEsilence LUX 8000B turbine (KaVo Dental GmbH, Biberach an der Riß, Germany) with
water irrigation at 20 ◦C. The surface was sequentially polished with a small-grained WC
bur (reference H37931. 018 followed H37UF and H37931023, (Brasseler, KOMET; GmbH &
Co., KG, Lemgo, Germany), a coarse-grained diamond polisher (Rugbyno. 9608.314.030
KOMET; GmbH & Co., KG, Lemgo, Germany), and a small-grained SiC polisher Arkansas
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and finishing amalgam (order no. 9618.314.553 KOMET; GmbH & Co., KG, Lemgo, Ger-
many). For each drill, the time used was 1 min. In Figure 2, all the instruments used in the
implantoplasty process can be observed.
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In order to dry the water from the metal particles, the samples were lyophilized. Once
10 g of Ti powder was obtained with original dental implant and dental implant modified by
the implantoplasty procedure, the residual stress, open circuit corrosion, potentiodynamic
curves, and titanium ion release were studied.

The samples studied comprised three groups:

• Cp-Ti dental implant as received. (grade 4). (As-received)
• Cp-Ti dental implant treated by implantoplasty. (Implantoplasty)
• Cp-Ti debris obtained by implantoplasty. (Debris)

Surface residual stresses were determined by an x-Ray diffractometer with a Bragg-
Bentano configuration (D500, Siemens, Munchen, Germany). The stresses were calculated
for the family of planes (213), which diffract at 2θ = 139.5◦. With these crystallographic
conditions, the elastic constants are EC = (E/1 + υ)(213) = 90.3 (1.5) GPa. The angles (θ)
determined at 0◦ and five negative- and five positive-angles. Eleven angles were evaluated.
The peaks were adjusted with a pseudo-Voigt function using special software (WinplotR,
free access on-line) and then transformed to interplanar distances (dψ) using Bragg’s
equation. The dψ vs. sen2ψ graphs and the calculation of the slope of the linear regression
(A) were obtained by means of adequate software (Origin, Microcal, Wellsley, MA, USA).
The residual stress is: σ = EC*(1/d0)*A, where d0 is the interplanar distance for ψ = 0◦.

A total of 30 samples, 10 samples per group, were used for the corrosion tests. The
test area for each sample was 19.6 mm2. The electrolyte for all tests was Hank’s solution
(ThermoFisher, Madrid, Spain) (Table 1), which is a saline fluid that closely captures the
ion composition of the human serum environment [4,6].

Table 1. Chemical composition of Hank’s solution.

Chemical Product Composition (mM)

K2HPO4 0.44

KCl 5.4

CaCl2 1.3

Na2HPO4 0.25

NaCl 137

NaHCO3 4.2

MgSO4 1.0

C6H12O6 5.5
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The electrochemical cell used was a polypropylene (PP) container with a capacity
of 185 mL and a methacrylate lid with 6 holes for the introduction of the sample, the
reference electrode, and the counter electrode (Figure 3). The reference electrode was
calomel (saturated KCl) for open circuit potential and potentiodynamic tests. The potential
of this electrode is 0.241 V compared with the standard hydrogen electrode. All tests were
performed at room temperature and in a Faraday box.
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Figure 3. Corrosion resistance equipment.

The calomel electrode and the sample were placed in the electrochemical cell to
determine the corrosion potential results in open-circuit. Measurements were analysed for
5 h, taking results every 10 s. The potential was accepted when the variation of the potential
is lower than 2 mV for 30 min in accordance with the ASTM G31 standard [20–24]. This
test assesses which materials are more noble (higher potential), and thus less susceptible to
corrode. The data and the E-t curves were obtained using the PowerSuite software with the
PowerCorr-Open circuit.

Potentiodynamic polarisation curves were obtained for the 3 study groups taking in
account the ASTM G5 standard [23]. In this test, a variable electrical potential is imposed
by the potentiostat between the calomel electrode and the sample, producing a current
to flow between the sample and the counter electrode. The counter electrode used was
platinum [24]. Initially, the system was allowed to stabilise by means of an open-circuit test
for 1 h. After stabilization, this test was launched, performing a cyclic sweep from −0.8 mV
to 1.7 mV at a speed of 2 mV/s. These parameters were registered into the PowerSuite
software and the PowerCorr-Cyclic Polarization function can be used to obtain the graphs.
The results studied were:

- icorr (µA/cm2)/corrosion current density.
- Ecorr (mV)/Corrosion potential: value at which the current density changes from

cathodic to anodic.
- Erep (mV)/Repassivation potential: potential at which the passive layer regenerates.
- Ep (mV)/Pitting potential: value at which pitting corrosion may occur.
- ip (µA/cm2)/passivation current density.
- ip (µA/cm2)/repassivation current density.

The Ecorr and icorr parameters are obtained by extrapolating the Tafel slopes. The
Tafel slopes are also used to obtain the Tafel coefficients: anodic (βa) and cathodic (βc).
These coefficients represent the slopes of the anodic and cathodic branch, respectively. In
accordance with the ASTM G102-89 standard [24], these values are then used to calculate
the polarization resistance (Rp) using the Stern-Geary expression and the corrosion rate
(CR in mm/year) [24–28].

RP =
βa βc

2.303(βa + βc)icorr

CR = K1
icorr

ρ
EW
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K is the Stern-Geary constant (determined by the Tafel constants) is the only variable
that is normally not measured, but commonly assumed to be a value of 0.025. EW is the
equivalent weight. For an atomic species (so pure metals), the equivalent weight EW is
the atomic weight AW divided by the number of electrons needed for conversion. The
polarisation resistance indicates the resistance of the sample to corrosion when subjected to
small variations in potential. A total of 30 potentiodynamic tests were carried out, obtaining
at least 10 curves per group.

Five samples from each group have been used for the metal ion recovery test. After
weighing the samples (m = 0.206 g) and following the ISO 10993-12 standard [23], a weight
adjustment was made at the rate of 1 mL of Hank’s solution for each 0.20 g of sample, as
indicated in the standard. The 5 samples of each group were placed in the same Eppendorf
with 5 mL of Hank’s solution and stored at 37 ◦C. Hank’s solution should be extracted and
stored in the refrigerator after 1, 3, 7, 14, and 21 days. After each extraction, 5 mL of fresh
Hank’s solution was replenished in the Eppendorf containing the samples. All Eppendorf
tubes should be cleaned with 2% nitric acid and dried before use.

After 21 days, the concentration of released titanium ions was measured, at the test
times indicated above, by inductively coupled plasma mass spectrometry (ICP-MS) with
the Agilent Technologies 7800 ICP-MS.

3. Results

Figure 4 shows the rough surface of the original dental implant by electron microcopy.
The roughness determined was Ra of 1.87 µm, which is the most suitable roughness for
osseointegration [2–4]. This roughness was obtained by shot blasting using Al2O3 as the
abrasive element.
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Figure 4. (a) As-received titanium dental implant. (b) Passivated surface on the titanium.

Figure 5 shows a dental implant that has been treated by implantoplasty, where we can
observe the great damage that is exerted on the dental implant. In this case, the rough area
disappears due to machining, leaving a smoother surface but full of machining scratches.
In Figure 5, at greater magnification, one can see the sliding lines or deformation bands,
indicating the large amount of deformation on the surface. In Figure 6, the particles are
detached from the dental implant and can be are observed in the form of an arc due to
the deformation produced, which in this case has exceeded the fracture stress. Figure 6
at greater magnification shows the microstructure of equiaxial titanium grains with large
deformation bands as well as twinning on the inside of the crystals, which shows the high
internal stress of these particles. This microstructure has been revealed by HF treatment for
15 s.
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The values for the residual stresses are summarized in Table 2. Compressive stresses
induced by implantoplasty on c.p. Ti are statistically significant (p < 0.001, t-Student) and
highly different from as-received dental implant with the debris. All the results present
statistically significant differences between as-received, implantoplasty, and debris.

Table 2. Surface residual stresses calculated at the different samples.

Material σ (MPa)

As-received −77.2 ± 5.2
Implantoplasty −120.0 ± 10.3

Debris −202.1 ± 12.2

For the corrosion studies, the results can be observed in Table 3. These results show
that the highest open-circuit corrosion potential values (EOCP) were obtained for as-received
dental implant. Conversely, the titanium debris showed the lowest values in open circuit,
which indicated the highest tendency for corrosion. In Figure 7, the different curves of
open-circuit corrosion potential in relation to the time can be observed.

The potentiodynamic analysis confirmed that the treatment that produced surfaces
with the best corrosion resistance was as-received dental implants, showing the lowest
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values of corrosion current density (icorr) and corrosion rate (Vc). The curves are shown
in Figure 8. In addition, the original implants show the highest resistance to polarization
(Rp). Implantoplasty produced a loss of the corrosion resistance with respect to the as-
received samples.

Table 3. Electrochemical and corrosion parameters assessed for Ti alloy meshes with different
passivation treatments.

Samples EOCP
(mV)

icorr
(µA/cm2)

Rp
(MΩ/cm2)

ECORR
(V)

Vc
(mm/year)

As-received −195 ± 9 0.049 ± 0.007 1.14 ± 0.11 −340 ± 32 0.444 ± 0.067

Implantoplasty −273 ± 10 0.056 ± 0.005 1.07 ± 0.18 −368 ± 47 0.477 ± 0.045

Debris −334 ± 17 0.063 ± 0.009 1.00 ± 0.06 −411 ± 21 0.501 ± 0.077
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Moreover, only in titanium debris has pitting been observed by scanning electron
microscopy. This fact is due to the aggressive corrosion behavior and favoured the degrada-
tion of titanium in two ways, namely titanium ion release and the oxidation of the particles.
In Figure 9, the pitting of the debris can be observed.
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Figure 9. Pitting corrosion marks produced after completing the potentiodynamic test on a debris
titanium released aby the implantoplasty process.

Table 4 shows the cumulative Ti ion release in parts per billion (ppb) from the different
samples studied in Hank’s solution after increasing days of incubation. Analogous to the
highest electrochemical stability, Ti ion release was the lowest from as-received, with a
total cumulative concentration after 21 days of incubation of 7.0 ± 0.6 ppb. Differences
are statistically significant when comparing Ti ion release from as-received surfaces with
titanium debris (15.3 ppb ± 1.9). More than doubled the ion release values from as-
received surfaces.

Table 4. Ti ion release (ppb) at different incubation times in Hank’s solution.

Mesh 1 Day 3 Days 7 Days 14 Days 21 Days

As-receieved 1.3 ± 0.2 2.7 ± 0.5 2,9 ± 0.5 4.5 ± 0.4 7.0 ± 0.6

Implantoplasty 1.7 ± 0.4 3.3 ± 0.4 4.1 ± 0.2 5.7 ± 0.3 9.1 ± 0.5

Debris 2.9 ± 0.8 4.8 ± 0.8 5.3 ± 0.9 10.4 ± 5.9 15.3 ± 1.9

4. Discussion

One of the main problems in oral implant dentistry is peri-implantitis and it is cur-
rently the leading cause of revision. The absence of bactericidal treatments approved by
accreditation agencies due to the long-term nature of clinical studies of different bacteri-
cidal implant strategies [29–35] has given rise to treatments such as implantoplasty that
can be performed in any dental clinic. Bactericidal treatments under study include silver
nanoparticles as an element with a high bactericidal capacity [30,31], the functionalisation
of titanium with organic compounds, such as TESPSA and lactoferrin among others, and
the use of titanium with organic compounds, such as TESPSA and lactoferrin [31,36]. The
long-term behavior of nanoparticles or the complicated and costly anchoring of organic
compounds in titanium means that these treatments have not yet matured sufficiently for
their application. This has led to implantoplasty being applied at least in the most severe
cases. However, there are no protocols and there are not many studies of the implications
of such an aggressive treatment as implantoplasty.
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Undoubtedly, the machining of titanium causes a severe loss of mechanical properties
due to the reduction of the area of the dental implant and the important plastic deformation
produced in the titanium. In addition, the effect of machining on the anchorage points
to the host tissue. In this aspect, implantoplasty should be discouraged in narrow dental
implants as the sectioning in these is very compromised and there could be a danger of
fracture of the dental implant [37,38].

In addition to the mechanical damage, there is also damage to chemical stability. In this
contribution, we have been able to verify the loss of corrosion resistance of the machined
implant and even more so in titanium residues. As we have seen, the loss of corrosion
resistance goes hand in hand with an increase in the mechanical stress accumulated in
the material. It is well known that metals with high stored energy are very susceptible to
corrosion. In this study, it was found that the debris, which has the highest stored energy
due to the large amount of deformation, is the most corrosive. This fact is worrying as
these particles can remain in the surrounding tissues and also produce titanium oxide.
It is well known that there are many different stoichiometries of titanium oxide that are
not biocompatible [39,40]. In addition, if the particles are very small in the nanometer
size range, they are not detectable by the immune system and can lead to more serious
systemic problems [40–43]. There is already some work on the reaction of inflammatory
cells to the detached particles and the results are not very good. Therefore, implantoplasty
should be considered as a risky treatment and should be performed in cases of severe
bacterial colonization with bone loss. Researchers in the field of biomaterials, together with
clinicians, must work to achieve a bactericidal treatment that avoids such an aggressive
treatment as implantoplasty.

Recently, Toledano-Serrabona et al. [44,45] have studied the characteristics of detached
particles in Ti-6Al-4V dental implants showing a certain level of cytotoxicity and inflam-
matory cell reaction. In addition, the surface properties of the dental implant topography
have been studied [46] and the difficulty of osteoblastic growth on the surfaces of the
dental implant with implantoplasty. Likewise, strategies have been studied to prevent
infection processes in implantoplasty treatments with the introduction of antibiotics [47].
The combination of a resective and reconstructive surgical approach together with locally
delivered antibiotic achieved a high disease resolution rate after one year of follow-up and
constitutes a viable option for the management of peri-implantitis a short-term. The results
are encouraging, but they do not have a long-lasting bactericidal action. Antibiotics also
have no effect on the toxicity processes of the particles and the surface of the dental implant
in the case of corrosion, as antibiotics have no effect.

Indeed, the technique of implantoplasty removes biofilms from the titanium surface to
prevent peri-implantitis and also preserves the osseointegrated dental implant. However,
as we have seen, it reduces the resistance to corrosion, increases the release of titanium
ions into the medium, and reducing the implant cross-section by machining will lead to a
reduction in mechanical properties. In this sense, it is necessary to continue researching
new anodisation treatment techniques, such as those published by Harraft et al. [48] where
titanium is anodised in the form of TiO2 nanotubes that can contain bactericidal drugs, or
others based on citric acid [49], or with Pirahna treatments that, due to their nanotexture,
prevent bacterial colonization [50].

One aspect that should be studied is how the titanium surface will behave towards
bacteria after implantoplasty. In principle, everything suggests that having a surface
with less roughness than that of the as-received implant will make it more difficult for
biofilm to form [30,31]. It is well known that the roughness of the dental implant, which is
fundamental for osseointegration and fixation of the implant to the bone, is detrimental to
bacterial colonization [4,5]. Therefore, the reduced roughness caused by the machining of
the implant process would favour the reduction of plaque adhesion. In the same way, the
lack of a certain roughness should be studied if osteoblasts could adhere, proliferate, and
differentiate on this surface. It will undoubtedly be a disadvantage for the formation of
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new bone. For all these reasons, it is necessary to continue studying these biological aspects
on titanium surfaces that have undergone implantoplasty.

5. Conclusions

The implantoplasty technique is used to remove bacterial plaque adhering to the
titanium surface. The machining of the dental implant causes a high residual stress on
the surface of the dental implant, which promotes electrochemical corrosion. In addition,
the particles released into the medium have higher stored energy and therefore greater
susceptibility towards corrosion. For debris, the highest values of corrosion rate and release
of ions into the physiological medium are observed. Ion release behaves analogously
to corrosion resistance. Pitting has been observed in the debris. This behavior is of
clinical relevance and we must be careful with the techniques of particle removal in the
oral environment.
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