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ABSTRACT. Three methods for the production of Polyethylene glycol (PEG) coatings on 

titanium are compared, i.e. plasma polymerization, electrodeposition and silanization. The 

compared deposition methods presented similar wettability (hydrophilic coatings), chemical 

composition assessed by XPS and thickness around 1nm. The coatings lowered albumin 

adsorption and presented a decreased fibroblast, Streptococcus sanguinis and Lactobacillus 

salivarius adhesion. Immobilization of a cell adhesion peptide (RGD) presented a higher 

fibroblast adhesion and no alteration of the bacterial adhesion, giving three methods for the 

biofunctionalization of titanium for dental implants. The feasibility of each methodology is 

compared in terms of the process parameters in order to provide a guide for the election of the 

methodology.  
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INTRODUCTION 

Polyethylene glycol (PEG) is a well-known polymer employed to develop antifouling surfaces. 

When immobilized on a substrate it renders hydrophilic character to the surface, which has been 

related to the reduction of protein adsorption1–3, mammalian cell adhesion4,5 and bacterial 

adhesion6–8. These coatings also reduce platelet adhesion, leading to a lower risk of thrombus 

formation, tissue damage and other cytotoxic effects9. Thus, PEG coatings have been used to 

obtain anti-infective medical implants10–13, biosensors with improved signal-to-noise ratios14,15 

and low-fouling membranes16–18, among other applications. 

Titanium is widely used for the production of implantable devices, such as dental and orthopedic 

implants19–21. The use of titanium in contact with body fluids and tissues may lead to unspecific 

protein adsorption, cell adhesion and bacterial adhesion, which can induce adverse pathogenic 

problems in clinical practice, such as thrombosis, lack of osseointegration and biomaterial related 

infections22,23.  

Infections related to titanium implants are difficult to treat since bacterial adhesion often leads to 

the formation of a biofilm, which is a multi-species community embedded in a polysaccharide 

extracellular matrix produced by the bacteria. The biofilm protects the bacteria community 

against the immune response and provides them with resistance to antibiotic treatments24–26. 

Bacterial ecology found in a biofilm is complex and formed by several species. For example, in 

the case of dental implants, a number of early colonizers including Streptococcus sanguinis27–29 

initially adhere to the implant surface, and subsequently guide the adhesion of later colonizers, 

such as Porphyromonas gingivalis, Fusobacterium nucleatum and Aggreggabactiter 
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actinomycetemonitans30,31. Other species have a role on maintaining the stability of the biofilm 

through interactions with other bacterial strains, like Lactobacillus salivarius32,33.  

Different methods have been studied in order to produce PEG coatings. Their preparation can be 

done via physical adsorption34, self-assembled monolayers35, or covalent bonding14. Several 

studies dealt with the influence of the PEG properties on the antifouling abilities of the coating35–

37. However, there is no data on the differences between the deposition methods in terms of their 

antifouling properties.  

Among the existing methods, a promising strategy is the use of plasma polymerization. Plasma 

treatments are a suitable technique for the production of polymeric layers on different substrates, 

such as polymers38–40 or stainless steel41. In this regard, we have previously reported the 

production of nanometric PEG-like layers on titanium by plasma polymerization of 

tetra(ethylene glycol) dimethyl ether42. Plasma-based methods are solvent-free, allow the 

treatment of several samples at the same time and are suitable for the treatment of complex 

geometries. The properties of plasma coatings can be controlled by modifying the parameters of 

the plasma treatment, such as the pressure, power of the plasma and the type of precursor used, 

among others39.  

Alternatively, electrochemical treatments are able to produce a great variety of coatings, such as 

hydroxyapatite43, phospholipid-based polymers44 and silver-doped surfaces45. Electrodeposition 

of polymers can be performed via electropolymerization46,47 or by electrostatic attraction of the 

polymer to the sample, which acts as one of the electrodes of the system48. Production of PEG-

coatings by means of electrodeposition was developed by Tanaka et al.49. In their work, an 

aqueous solution of PEG-amine terminated containing sodium chloride was used as the 
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electrolyte for the electrodeposition. This coating showed a reduced biofilm formation of 

Streptococcus gordonii and Streptococcus mutans on titanium surfaces50. The use of PEG 

electrodeposition implies the use of water as a solvent and represents a simple and fast 

procedure.  

Finally, PEG silanization is a technique that has been widely used for the preparation of PEG-

coatings on silicon wafers. It was initially developed by Zhang et al.51, by using PEG and silicon 

tetrachloride (SiCl4), which in turn reacted with the silanols of the silicon surface. This method 

was also used by Kocijan et al.52 to coat stainless steel. A significant reduction of protein and 

bacterial adhesion was observed for the immobilization of the silanized PEG on both silicon and 

stainless steel. Methods for the silanization of silica surfaces can also be applied to titanium, due 

to the presence of a titanium oxide layer53. In the present work, this approach is applied to the 

titanium surface in order to achieve a similar coating. 

Integrin-binding peptide sequences can be immobilized on the titanium surface to improve the 

bioactivity of the implant54–56 The best well-known cell adhesive motif is the arginine-glycine-

aspartic acid (RGD), a sequence found in proteins of the extracellular matrix such as fibronectin, 

which is able to bind cells via specific interactions with integrins. The RGD sequence is thus 

capable of promoting the adhesion of a large number of cells57–59. In this regard, the use of RGD 

peptides in combination with PEG-based coating has been investigated to enhance tissue 

integration in the presence of the antifouling polymer 60–62; yet a comparison of the effect of the 

cell adhesive peptide depending on the PEG coating is missing.    

The main aim of this work is to compare the in vitro biological performance of three different 

methods for coating titanium with PEG layers, namely, plasma polymerization, electrodeposition 
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and silanization. Plasma polymerization renders different properties on the polymer, since the 

polymerization process is different from the traditional one (i.e. radical polymerization). The 

comparison of the in vitro response of the three techniques is of special interest taking into 

account the differences between a plasma process and the wet chemical processes. Surface 

characterization was performed by means of water contact angle and XPS. In a second stage, a 

cell adhesion peptide was added to the surfaces in order to improve the response of the 

mammalian cells to the PEG coatings while maintaining the antifouling effect for bacteria. 

Following chemical characterization of the layers, the response of mammalian cells and bacteria 

was tested in order to check the biocompatibility of the coatings. 

MATERIALS AND METHODS 

Materials 

Commercially pure grade 2 titanium was purchased as 2m rods of 10mm in diameter, which 

were cut into disks of 2mm disks (VDM metals, Germany). Silicon carbide grinding paper of 

different particle size (P400, P600, P800, P1200 and P2500) and colloidal silica suspension 

(Eposil M11, particle size 0.06µm) were purchased from Neurtek (Spain). Isopropanol (>99.7%), 

ethanol (96%) and acetone (99%) were obtained from Panreac (Germany) and used without 

further purification. Toluene (99.9%), tetraethylene glycol dimethyl ether (tetraglyme, 99%), 

PEG (Mw=1000g/mol), bis(3-aminopropyl)-poly(ethylene glycol) (PEG-amine), trimethylamine, 

silicon tetrachloride were purchased from Sigma Aldrich (USA) and used without further 

purification. Phosphate buffer saline (PBS, pH=7.4, Gibco, US) is purchased as 5g tablets which 

are dissolved in 500mL of distilled water and autoclaved at 121ºC for 1h before using.  
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Titanium samples preparation 

Titanium disks were grinded with silicon carbide paper and polished with colloidal silica. 

Afterwards, samples were solvent cleaned by sonication in a series of solvents: toluene, 

isopropanol, water, ethanol and acetone. Samples polished and cleaned as described were used as 

control (Ti). Before coating with PEG with any of the three methods evaluated, samples were 

plasma activated in low pressure plasma. Details of the plasma treatment can be found 

elsewhere42. Briefly, a 5 min argon plasma treatment at 100W and at 0.40mbar was performed 

with a radio frequency (13.56MHz) low pressure plasma system (Femto Plasma System, Diener, 

Germany). 

Coating procedures 

Plasma polymerization was performed right after plasma activation in the same reactor without 

breaking the vacuum. The polymerization precursor was tetra(ethylene glycol) dimethyl ether 

introduced by bubbling argon in the reactor, and the parameters used were 100W, 0.40mbar, and 

1h, according to a previous work42. The process was performed in pulsed mode with a ton=20µs 

and toff=20ms (Scheme 1a).  

For the preparation of silanized PEG, a solution of 0.98% of PEG (Mw=1000g/mol) in anhydrous 

toluene (99.8%) was mixed with 136µL of trimethylamine  during 1h in an inert atmosphere. 

After this time, 20µL of silicon tetrachloride was added and left to react for 5min. This solution 

was filtered and the plasma activated samples were immersed in this solution for 2h (Scheme 

1b). 

Electrodeposition was done in an electrolytic cell with the plasma activated sample as the 

cathode, a saturated calomel reference electrode and a platinum contraelectrode, connected to a 
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potentiostat (Princeton Applied Research, Parstat 2273). The procedure was an adaptation of 

Tanaka et al49. The electrolyte was an aqueous solution containing 2% in weight of bis(3-

aminopropyl)-poly(ethylene glycol) (PEG-amine) and 0.3M of NaCl. A potential of 5V was 

applied to the system during 5min (Scheme 1c).  

Scheme 1. Scheme reaction for the production of plasma polymerized tetraglyme (a), PEG silanization 
(b) and electrodeposition of PEG-amine (c) 

 

Peptide immobilization 

The RGD peptide was prepared by solid-phase peptide synthesis and characterized as explained 

in previous studies54. For the physisorption of RGD, Ti and PEG-coated samples were immersed 

overnight at room temperature in a solution of 100µM of the peptide in Phosphate Buffer Saline. 

After the immersion, samples were cleaned twice with PBS. 

A summary of the sample codes used in this study is presented in table 1. 
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Table 1. Sample codes used in this study. Polishing, solvent cleaning and plasma activation was 
done for all samples 

Sample treatment Sample code 

Control Ti 

Plasma activated Ti-PA 

Plasma polymerized PEG Ti-PEG-PP 

Silanized PEG Ti-PEG-S 

Electrodeposited PEG-amine Ti-PEG-E 

Control+RGD Ti-RGD 

Plasma polymerized PEG+RGD Ti-PEG-PP-RGD 

Silanized PEG+RGD Ti-PEG-S-RGD 

Electrodeposited PEG-amine+RGD Ti-PEG-E-RGD 

 
Surface characterization 

Static water contact angle was measured by the sessile method with ultrapure water (MilliQ, 

Millipore Corporation), with OCA15 goniometer (Dataphysics instrument Company, Germany). 

A 2µL droplet was placed at 1µL/s. The shape of the drop was analyzed using the software 

SCA20 (Dataphysics instrument Company, Germany). Three areas of each sample were 

measured in triplicate for each condition. 

Chemical analysis was performed by means of X-ray photoelectron spectroscopy (XPS). Spectra 

were acquired in ultra-high vacuum (5.0·10-9 mbar) with an XR50 Mg anode source operating at 

150 W and a Phoibos 150 MCD-9 detector (D8 advance, SPECS Surface Nano Analysis GmbH, 

Germany). Spectra were recorded at pass energy of 25 eV with a step size of 1.0 eV for survey 

spectra and 0.1 eV for high resolution spectra of C1s, O1s, Si2p, Cl2p, N1s, and Ti2p. C1s peak 

was used as a reference. CasaXPS software (Casa Software Ldt, UK) was used for the 
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determination of atomic elemental composition applying the manufacturer set of relative 

sensitivity factors. Two samples per condition were analyzed. 

Film thickness was estimated by the attenuation of the XPS titanium signal according to the 

equation 1, where 𝐼𝑇𝑖 is the intensity of Ti2p from the clean surface (Ti-PA), 𝐼𝑇𝑖0  is the intensity 

of the Ti2p from PEG coated substrate, 𝐿𝑇𝑖 is the electron attenuation length for Ti peaks and θ is 

the take-off angle for XPS measurements. 

𝐼𝑇𝑖 = 𝐼𝑇𝑖0 exp �− 𝑡
𝐿𝑇𝑖𝑠𝑖𝑛𝜃

�                                    Equation 1 

Electron attenuation length was assumed as 2.8Å according to Ruiz-Taylor et al.63 and the take-

off angle was 90º for all the measurements.  

Biological evaluation 

Protein adsorption on the titanium surfaces was tested by immersing the samples in bovine serum 

albumin (BSA, Sigma Aldrich). BSA was stained with fluorescein isothiocyanate (FITC, Thermo 

Scientific, USA) with the Kit Pierce Antibody Labeling Kit (Thermo Scientific). The staining 

was performed by dissolving BSA in a phosphate-borate buffer, mixed with a FITC solution and 

purified in a resin to remove the non-reacted FITC. Samples were then immersed in 150 µL of 

FITC-BSA at a concentration of 100µg/mL during 1h in the darkness. Next, the protein was 

fixed with paraformaldehyde (Sigma Aldrich) at 2.5% v/v in PBS. After each step samples were 

washed with PBS. Coverslips were mounted on the samples in Mowiol (Merck Millipore 

Corporation, Bedford, MA, USA) mounting medium. Samples were photographed with a Nikon 

E-600 fluorescence microscope, and an Olympus DP72 camera (Nikon Corporation Instruments 
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Company, USA). To assess protein adsorption, four images were taken for each sample and the 

pixel intensity was calculated by the software Image-J (NIH, MD, USA). 

Potential cytotoxic effects of the coatings were evaluated according to ISO 10993-5 standard on 

human foreskin fibroblasts (hFFs, Merck Millipore Corporation) using three samples for each 

condition. All specimens were sterilized by immersion in ethanol 70% during 30min. Extracts of 

the samples at concentrations of 1:1, 1:10, 1:100 and 1:1000 were prepared by immersing the 

samples in Dulbecco's Modified Eagle Medium (DMEM, Invitrogen, Carlsbad, CA, USA) for 

72h at 37ºC. 5000 cells/well were seeded on a 96-well tissue culture polystyrene (TCPS) plate 

and incubated with media for 24 h. Afterwards, culture media was replaced by the extract 

dilutions. After 24 h, cells were lysed with mammalian protein extraction reagent (mPER, 

Thermo Scientific, USA) and quantified by the activity of lactate dehydrogenase enzyme (LDH) 

with the LDH Cytotoxicity detection kit (Roche, USA). 

Cell adhesion tests were performed with hFFs. Samples were sterilized with ethanol and cleaned 

twice with PBS. 2·104 cells per samples were seeded on the samples and incubated for 6h at 

37ºC in DMEM. After the incubation time, samples were washed twice with PBS and the cells 

remaining attached to the sample were lysed with mPER. The number of adherent cells was 

assessed by quantification of the activity of LDH. For observation of the cells with scanning 

electron microscopy (SEM, Focused Ion Beam Zeiss Neon40), samples with the adhered cells 

were fixed in a 2.5% paraformaldehyde solution in PBS during 1h at 4ºC. Dehydration of the 

samples was done by immersion in a sequence of ethanol solutions at 50, 70, 90, 96 and 100% 

(v/v) for 15min each solution. After dehydration, samples were carbon coated for the SEM 
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observation. SEM images were taken at 5.0kV. Triplicates for each condition were used for the 

quantification, and one extra sample was prepared for SEM observation. 

Bacterial adhesion tests were performed with two bacterial strains: Streptococcus sanguinis (S. 

sanguinis, CCUG 17826, Culture Collection University of Göteborg (CUG), Göteborg, Sweden) 

and Lactobacillus salivarius (L. salivarius, CECT 4063, Colección Española de Cultivos Tipo 

(CECT), Valencia, Spain). Todd-Hewitt broth (TH) (Sharlab SL, Spain) was used as culture 

media for S. sanguinis and Man, Rogosa and Sharpe broth (MRS) (Sharlab SL) as culture 

medium for L. salivarius. Cultures were grown overnight prior every assay, and the optical 

density at 600nm was adjusted at 0.2 ± 0.01, giving approximately 1·108 colony forming units 

per mL (CFU/mL). Samples were immersed in 1mL of the bacterial suspension during 2h at 

37ºC. In order to detach bacteria from the samples, 5min of vortexing were applied in 1mL of 

PBS. Serial dilutions of the PBS were seeded on medium-agar plates and incubated for 24-48h at 

37ºC to count the CFU adhered to the samples. 

Statistical analysis 

Results are presented as the average ± standard deviation (SD), for at least three independent 

samples. Statistical analysis was performed with Minitab 17TM software (Minitab Inc, State 

College, PA, USA). Data were analyzed by Student’s t-test and one-way ANOVA tables with 

Tukey’s multiple comparison tests in order to evaluate outliers and statistically significant 

differences between sample groups, respectively. The differences were considered as statistically 

significant when p<0.05. 

 

12 

 



RESULTS AND DISCUSSION 

The application of PEG coatings on certain medical devices is intended to decrease bacterial 

adhesion in order to reduce the rate of infections related to the implantation. In the case of dental 

and orthopedic applications, cell adhesion should be maintained in order to achieve a proper 

integration and stability of the implant. In the present study, three different methods for the 

deposition of PEG on the titanium surface have been characterized and compared in terms of 

their biological and microbiological in vitro performance.  

The first step for the coating of the titanium samples was an activation of the surface. Plasma 

activation is a well-known procedure for the cleaning and activation of metals, polymers and 

ceramics64. In this study, the titanium surface was activated in order to remove organic 

contamination of the surface and increase the functionality of the titanium oxide by grafting 

reactive hydroxyl groups on the titanium surface. According to the water contact angle (Figure 

1), this treatment renders high hydrophilicity. The enhanced wettability is due to the combined 

effect of the removal of contaminants and the formation of hydroxyl species65,66, as confirmed by 

the  reduced amount of carbon found by XPS (table 2). 

Control samples showed the most hydrophobic behavior. PEG coatings render a hydrophilic 

surface, as can be observed by comparing the water contact angle of the PEG-coated surfaces 

with that of the control. All PEG-coated samples are significantly more hydrophilic, with the 

plasma process (Ti-PEG-PP) leading to the highest wettability (θ≈10º). Silanized PEG (Ti-PEG-

S) and electrodeposited PEG (Ti-PEG-E) presented approximately the same hydrophilicity 

(around 50º). Lower values for the contact angle of the plasma polymerized sample can be 

explained by the formation of oxygen functionalities in the polymer due to the plasma process 67, 
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and the different structure of the PEG-like layer obtained, possibly more cross-linked and with 

shorter chains than the PEG obtained by the other processes, as shown in Scheme 1. The water 

contact angles for PEG-coatings have been reported to be in the range of 15-60º depending on 

the substrate, the deposition method and the chemical properties of the immobilized 

molecule 1,68,69, thus, the wettability measured for the PEG-coated titanium is indicative of the 

presence of the polymer. 

The adsorption of the RGD peptide on the surfaces resulted in a decrease in the water contact 

angle for all samples with the exception of Ti-PEG-PP. Nonetheless, Ti-PEG-PP-RGD presented 

a lower contact angle compared with the rest of samples containing RGD. 

 

Figure 1. Water contact angle of the PEG-coated samples by the three different methods and the PEG-
RGD samples. Samples with the same symbol have no statistically significant differences (p<0.05). 

The presence of a certain percentage of carbon as measured by XPS (table 2) indicates the 

presence of an organic contamination layer on the titanium surface70,71. The amount of carbon on 

the surface decreases when applying the activation plasma treatment (Ti-PA) due to the removal 
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of organic contaminants. In contrast, an increase in the C1s signal can be observed in all PEG-

coated samples as compared to Ti-PA, indicating the presence of the polymer layer. After the 

RGD immobilization, this percentage further increases as a result of the deposition of the 

peptide. Changes in the Ti2p signal followed an opposite trend: the presence of the PEG and 

RGD coatings reduced the amount of detectable Ti by XPS. The electrodeposition of amino-PEG 

on the surfaces (Ti-PEG-E) was also accompanied by a significant increase in the N1s signal. 

Alternatively, the incorporation of PEG by silanization (Ti-PEG-S) resulted in significant 

percentages of Si2p and Cl2p present in silicon tetrachloride. Adsorption of RGD on the titanium 

surface rendered an increase on the %C 1s and %N 1s (Table 1), showing the presence of the 

peptide.  

Table 2. % atomic composition of the Titanium with the different PEGylation treatments and RGD 
adsorption. 

 C1s O1s N1s Si2p Cl2p Ti2p 

Ti 23.5 ± 0.8 59.6 ± 0.8 0.6 ± 0.1 0.2 ± 0.0 0.1 ± 0.1 16.0 ± 0.1 

Ti-PA 15.0 ± 0.7 62.1 ± 0.7 0.3 ± 0.1 0.3 ± 0.0 0.0 ± 0.1 22.3 ± 0.1 

Ti-PEG-PP 21.8 ± 1.0 64.0 ± 0.6 0.2 ± 0.1 0.3 ± 0.0  0.1 ± 0.1 12.0 ± 0.6 

Ti-PEG-S 17.7 ± 0.5 57.7 ± 0.8 0.3 ± 0.0 10.9 ± 1.2 1.8 ± 0.0 13.4 ± 0.9 

Ti-PEG-E 27.1 ± 1.2 55.0 ± 0.7 1.3 ± 0.2 2.7 ± 1.1 0.4 ± 0.3 13.5 ± 0.1 

Ti-PEG-PP-RGD 37.5 ± 2.1 51.5 ± 1.4 0.6 ± 0.0 0.2 ± 0.0 0.2 ± 0.0 10.1 ± 0.7 

Ti-PEG-S-RGD 25.8 ± 1.8 58.9 ± 1.0 0.4 ± 0.1 5.2 ± 0.6 1.7 ± 0.3  8.0 ± 0.5 

Ti-PEG-E-RGD 30.1 ± 1.6 54.4 ± 1.0 1.0 ± 0.0 2.4 ± 0.5 2.0 ± 0.2 10.2 ± 0.8 
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The decomposition of the C1s peak of the PEG-coated samples shows a peak at 286.5eV, 

attributed to the presence of C-O bonds (ether) characteristic of PEG (Table 3) confirming the 

formation of a PEG coating in all the PEG-coated samples. The other peaks found at 285.0eV 

and 287.0eV can be attributed to the presence of C-C (hydrocarbons) and C=O bonds (carbonyl 

group), respectively. Ti-PEG-PP presented an additional peak at 288eV corresponding with the 

presence of O-C=O (carboxyl groups), probably due to the dissociation and formation of new 

species in the plasma reactor or etching of the deposited polymer by argon employed as carrier 

gas and further reaction with air after treatment 72,73, as indicated in Scheme 1. Presence of Ti-

PEG-E was also supported by the detection of a higher amount of nitrogen on the treated 

surfaces, due to the presence of the amino groups at the end terminals of the amino terminated 

PEG. For Ti-PEG-S, higher silicon and chlorine amount are caused by the use of silicon 

tetrachloride employed for the silanization of PEG (Scheme 1).  

Regarding the oxygen signal (Table 3), two different peaks were found. The peak at 532.0eV 

corresponds to a combination of the titanium oxide surface and to the presence of hydroxyl 

groups, while the peak at 533.4eV can be attributed to ether bonds from the PEG. For the Ti-

PEG-S, this peak can be also attributed to the presence of silanol and siloxane groups. 
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Table 3. Contribution of the peaks on the XPS spectra of C1s and O1s 

 C1s O1s 

Binding Energy (eV) 285.0 286.5 288.0 288.8 532.0 533.4 

Ti-PEG-PP 15.9 ± 0.5 54.4 ± 1.2 17.6 ± 0.7 11.9 ±1.1 49.6 ± 0.9 50.4 ± 0.8 

Ti-PEG-S 44.5 ± 0.9 46.9 ± 0.7 8.5 ± 0.8 - 45.1 ± 0.7 54.9 ± 0.4 

Ti-PEG-E 38.8 ± 1.1 39.9 ± 0.9 22.1 ± 0.5 - 40.4 ± 0.8 59.6 ± 0.5 

 

The coating was assumed to be homogeneous according to SEM images (not shown). Thickness 

of the coatings estimated by XPS revealed the presence of an ultra-thin coating, with values of 

1.4nm for Ti-PEG-PP and Ti-PEG-E, and a value of 1.8nm for Ti-PEG-S. Thus, very thin layers 

are obtained by any of the techniques. These results are in agreement with the thickness obtained 

by Papra et al 74, and Tanaka et al 49. Both authors gave thicknesses values between 1-2nm for 

either silanized PEG and electrodeposited PEG respectively.  

Notwithstanding the low thickness of the layers, albumin adsorption on the PEG-coated samples 

is lower compared with the bare titanium, showing the antifouling character of the coatings 

(Figure 2). No differences on the fluorescence intensity of the FITC-BSA were observed 

between the samples. Measurement of the fluorescence intensity of FITC labeled proteins is an 

established method for the determination of protein adsorption on different substrates, as the 

fluorescence intensity can be considered proportional to the presence of protein75,76. Therefore, 

the three methods are adequate to confer similar antifouling properties to the titanium surface.  
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Figure 2. Fluorescence microscopy images (left) of the samples with adsorbed BSA-FITC a) Ti, b) Ti-

PEG-PP, c) Ti-PEG-S, d) Ti-PEG-E. Scale bar represents 50µm. Quantification by image analysis (right). 

Samples with the same symbol have no statistically significant differences. 

 

Indirect cytotoxicity assays revealed no toxic effect for the eluents of both PEG-coated and 

RGD-coated samples, as the survival of cells in contact with these eluents was above 80% for all 

the dilutions tested (data not shown).  

Cell adhesion of human fibroblasts was impaired by the presence of the PEG-coating in the case 

of Ti-PEG-PP and Ti-PEG-S. However, while cell adhesion of Ti-PEG-E tends to decrease, the 

difference is not statistically different from the control (Figure 3). Fibroblast adhesion is 

enhanced with the presence of the RGD with no statistically differences found within the 

methods of deposition, enhancing the biocompatibility of the coatings. Cell morphology 
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observed by SEM was not changed in presence of both PEG and PEG with RGD, with the cells 

spread on the surface.  

 

Figure 3. Number of cells present on the samples (right). Representative SEM images of the adhered 

cells. a) Ti, b) Ti-PEG-S, c) Ti-PEG-S-RGD. Scale bar represents 50µm. Samples with the same symbol 

have no statistically significant differences (p<0.05). 

In views of dental applications, two oral bacterial strains were tested. Bacterial adhesion assays 

with S. sanguinis (Figure 4a) and L. salivarius (Figure 4b) presented a significant decrease 

(p<0.05) on the number of bacteria attached on all PEG-coated samples with respect to control 

titanium surfaces. Bacterial adhesion of S. sanguinis and L. salivarius (Figure 4) also presented a 

decrease compared to bare titanium, as observed in other works with an antifouling 

coating50,77,78. The different methodologies employed to obtain the PEG coatings do not show 

statistically significant differences, so all the techniques are suitable to prevent bacterial 

adhesion. However, Ti-PEG-S tends to have a lower bacterial adhesion for the two tested strains. 
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Bacterial adhesion of both strains was not affected by the presence of RGD (Figure 4), as it was 

observed in previous studies for other bacterial strains 62.   

Dental implants are placed in a naturally contaminated environment, where bacteria are in 

competence with the host cells such as fibroblasts to colonize the surface. This situation was 

described by Gristina79, and it is commonly known as “the race for the surface”. This means that 

the proper integration of the implant is reliant on the ability of the surface of minimizing 

bacterial adhesion and/or maximizing cell adhesion. To test in vitro this situation, Zhao et al.80 

developed a co-culture experiment in which a bacterial strain is allowed to colonize the surface, 

and after a certain period of time, fibroblasts are seeded on the samples. This assay intends to 

more closely reproduce the clinical situation. Since the three compared methods rendered 

comparable in vitro results for the mono-culture experiments, a co-culture study was only done 

for Ti-PEG-E (see Figure S1 and S2 in the Supplementary Material), which is a fast and eco-

friendly method, carried out in an aqueous solution. The adhesion and spreading of hFFs in the 

presence of bacteria was higher for the samples coated with PEG (Ti-PEG-E) than for the control 

samples (Ti), showing that the PEG coatings are able to withstand bacterial adhesion while 

allowing cell colonization. This result is in agreement with the mono-culture experiments. 
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c  

Figure 4. Bacterial adhesion on the samples. a) S. sanguinis, b) L. salivarius. Samples with the same 

symbol have no statistically significant differences (p<0.05). 

The different techniques studied have advantages and disadvantages which need to be taken into 

account in the selection of the most suitable one for a particular application. For instance, 

silanization tends to reduce more the bacterial adhesion, reaching values of 70% of reduction 

compared to control. Indeed, it is possible to treat more than one sample at a time since the 

concentration of silanized PEG is high. However, to silanize, organic solvents (toluene) are 

employed and vacuum is required, which makes the process more expensive and less eco-
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friendly. Electrodeposition is a quick process which takes place using water as a solvent, at 

atmospheric pressure and room temperature. It renders a surface which reduces bacterial 

adhesion up to 65% compared to control, while cell adhesion is almost not affected. Lastly, 

plasma polymerization is a solvent free technique. The treatment of several samples at the same 

time is possible. It is a low pressure technique, which enhances the purity of the PEG-like 

coating. Plasma polymerized samples showed a reduction of 60% on bacterial adhesion, and the 

cell adhesion is also impaired to a similar extent. Taking this versatility into account, the 

selection of one method or another should be based on more practical parameters, such as the 

final application or the details of the manufacturing process. 

CONCLUSIONS 

Three different PEG coatings have been obtained on the titanium surface by different methods:       

plasma polymerization, electrodeposition and silanization. Chemical composition of the coatings 

and improved wettability correspond to the presence of the PEG polymer on the surface.  The 

coatings have antifouling properties against BSA and significantly decrease the bacterial 

adhesion of S. sanguinis and L. salivarius. The impaired cell adhesion due to the antifouling 

character of the PEG coatings was improved by the immobilization of a cell adhesive motive 

RGD, while maintaining the effect on the bacterial adhesion. The three deposition methods in the 

studied conditions do not present major differences in terms of biological performance, 

demonstrating that these methods are a good option for the preparation of PEG coatings on 

titanium.  
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As expected, the co-culture experiment showed a decrease in cell adhesion in the 

presence of bacteria (Figure I). For the plain Ti surface, the surface coverage is highly reduced, 

to values of around 25% compared to the Ti surface without bacteria. Moreover, the cell 

spreading is much lower (Figure II a, b, c), showing that the cells are not able to colonize the 

surface when the bacteria are present. This result was also found in a previous study using S. 

sanguinis and L. salivarius3. In contrast, for the Ti-PEG-E surface, the surface coverage is twice 

the one observed for the Ti, due to the antifouling character of the PEG coating. The cell 

spreading is higher compared to the found for the control sample (Figure II d, e, f). This is 

indicative of the better performance of the Ti-PEG-E to favor the cell adhesion while 

discouraging the bacteria adhesion. 

 

 

Figure S1. Quantification of the area covered by hFFS on the surfaces coated with bacteria 
compared to the same condition without bacteria (which is employed as control with 100% 

surface coverage) 
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Figure S2. Representative images of the surfaces tested in the co-culture experiments. (a) Ti + 
hFFs, (b) Ti + S. aureus + hFFs, (c) Ti + E.coli + hFFs, (d) Ti-PEG-E + hFFs, (e) Ti-PEG-E + 
S. aureus + hFFs, (f) Ti-PEG-E + E. coli + hFFs 

 

Experimental 

Cell-bacteria co-culture experiment was an adaptation from 2,3. Staphylococcus aureus 

CCUG 15915 (Culture Collection University of Göteborg (CCUG), Göteborg, Sweden), and 

Escherichia coli CECT 101 (Colección Española de Cultivos Tipo, Valencia, Spain) were used 

as the bacterial model. For co-culture experiments, a suspension of either S. aureus or E. coli 

was adjusted to an optical density of 0.2 in BHI, giving approximately 1·108cells/ml. 5µl 

(5·105cells/sample) of the bacterial suspension were seeded on each sample. After 2h at 37ºC, 

samples were washed three times in order to eliminate the non-attached bacteria, and hFFs in 

modified DMEM (DMEM with 2% BHI) at 2·104cells/sample were seeded and incubated for 

24h. After the incubation time, all the samples were washed twice with PBS, fixed and stained 

with Phalloidin-Rhodamin (Invitrogen) and DAPI (Invitrogen) for observation. Images were 

taken with a Leica TCS SPE confocal microscope and analyzed with Image J software. Five 

images were taken for each sample for the quantification, using duplicates for each condition. 
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